Controller Design Under Fuzzy Pole-Placement Specifications: An Interval Arithmetic Approach

This paper discusses fuzzy specifications for robust controller design, as a way to define different specification levels for different plants in a family and allow the control of performance degradation. Controller synthesis will be understood as mapping a fuzzy plant onto a desired fuzzy set of closed-loop specifications. In this context, a fuzzy plant is considered as a possibility distribution on a given plant space. In particular, pole placement in linear plants with fuzzy parametric uncertainty is discussed, although the basic idea is general and could be applied to other settings. In the case under consideration, the controller coefficients are the solution of a fuzzy linear system of equations with a particular semantics. Modal interval arithmetic is used to solve the system for each alpha-cut. The intersection of the solutions, if not empty, constitutes the solution to the robust control problem

[1]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[2]  D. Dubois,et al.  Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions , 1999 .

[3]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  Michael Hanss,et al.  Applied Fuzzy Arithmetic , 2005 .

[5]  Stefan Ratschan,et al.  Robust Pole Clustering of Parametric Uncertain Systems Using Interval Methods , 2003 .

[6]  Michael A. Ivanov Diophantine equations , 2004 .

[7]  Kong Fansen,et al.  Fuzzy dynamic response analysis of machine tool structure , 1999 .

[8]  Hideo Tanaka,et al.  Interval regression analysis by quadratic programming approach , 1998, IEEE Trans. Fuzzy Syst..

[9]  Vladik Kreinovich,et al.  Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets, and Applications , 1996 .

[10]  Sergey P. Shary,et al.  A New Technique in Systems Analysis Under Interval Uncertainty and Ambiguity , 2002, Reliab. Comput..

[11]  Ernest Gardeñes,et al.  Modal Intervals: Reason and Ground Semantics , 1985, Interval Mathematics.

[12]  Shankar P. Bhattacharyya,et al.  Robust Control: The Parametric Approach , 1995 .

[13]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[14]  Witold Pedrycz,et al.  Fuzzy control and fuzzy systems , 1989 .

[15]  Lambert Jorba,et al.  Interval Estimations of Solution Sets to Real-Valued Systems of Linear or Non-Linear Equations , 2002, Reliab. Comput..

[16]  A. Lordelo,et al.  On the design of robust controllers using the interval Diophantine equation , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[17]  Mohammed Chadli,et al.  Multivariable control systems - an engineering approach , 2003, Autom..

[18]  Isaac Horowitz,et al.  Quantitative feedback design theory : QFT , 1993 .

[19]  L. Mordell,et al.  Diophantine equations , 1969 .

[20]  Antonio Sala,et al.  Controller Design Under Fuzzy Model Uncertainty VIA CSP , 2004 .

[21]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[22]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Rolf Isermann Digital Control Systems , 1981 .

[24]  前田 博,et al.  Didier Dubois and Henri Prade Fuzzy sets in approximate reasoning, Part 1 : Inference with possibility distributions Fuzzy Sets and Systems, vol.40,pp143-202,1991 , 1995 .

[25]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[26]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[27]  Jesús Picó,et al.  Analysis of linear systems with fuzzy parametric uncertainty , 2003, Fuzzy Sets Syst..

[28]  S. Bhattacharyya,et al.  Robust control , 1987, IEEE Control Systems Magazine.

[29]  Li-Xin Wang,et al.  Adaptive fuzzy systems and control , 1994 .

[30]  Lambert Jorba,et al.  Formal Solution to Systems of Interval Linear or Non-Linear Equations , 2002, Reliab. Comput..

[32]  Kazuo Tanaka,et al.  Fuzzy control systems design and analysis , 2001 .

[33]  Panos J. Antsaklis,et al.  Linear Systems , 1997 .