A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons

[1]  Donhee Ham,et al.  Optimizing Nanoelectrode Arrays for Scalable Intracellular Electrophysiology. , 2018, Accounts of chemical research.

[2]  Nick Van Helleputte,et al.  A 16384-electrode 1024-channel multimodal CMOS MEA for high-throughput intracellular action potential measurements and impedance spectroscopy in drug-screening applications , 2018, 2018 IEEE International Solid - State Circuits Conference - (ISSCC).

[3]  A. Katsarou,et al.  Reporting for specific materials, systems and methods , 2018 .

[4]  Kenneth L. Shepard,et al.  A very large-scale microelectrode array for cellular-resolution electrophysiology , 2017, Nature Communications.

[5]  E. Boyden,et al.  Temporally precise single-cell resolution optogenetics , 2017, Nature Neuroscience.

[6]  Lorenz Pammer,et al.  Large-scale mapping of cortical synaptic projections with extracellular electrode arrays , 2017, Nature Methods.

[7]  L. Berdondini,et al.  Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes , 2017, Nano letters.

[8]  Rona S. Gertner,et al.  CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. , 2017, Nature nanotechnology.

[9]  Andreas Hierlemann,et al.  Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration , 2017, Scientific Reports.

[10]  Sang Heon Lee,et al.  High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. , 2017, Nano letters.

[11]  Karl Deisseroth,et al.  Integration of optogenetics with complementary methodologies in systems neuroscience , 2017, Nature Reviews Neuroscience.

[12]  Hongkui Zeng,et al.  Genetically Targeted All-Optical Electrophysiology with a Transgenic Cre-Dependent Optopatch Mouse , 2016, The Journal of Neuroscience.

[13]  Silviya M. Ojovan,et al.  Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes , 2016, Scientific Reports.

[14]  Stefan J. Kiebel,et al.  Inferring Neuronal Dynamics from Calcium Imaging Data Using Biophysical Models and Bayesian Inference , 2016, PLoS Comput. Biol..

[15]  Benjamin F. Grewe,et al.  High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor , 2015, Science.

[16]  D. Tampellini,et al.  Synaptic activity and Alzheimer's disease: a critical update , 2015, Front. Neurosci..

[17]  Paolo Massobrio,et al.  In Vitro Studies of Neuronal Networks and Synaptic Plasticity in Invertebrates and in Mammals Using Multielectrode Arrays , 2015, Neural plasticity.

[18]  Evan W. Miller,et al.  Improved PeT molecules for optically sensing voltage in neurons. , 2015, Journal of the American Chemical Society.

[19]  Douglas J. Bakkum,et al.  Revealing neuronal function through microelectrode array recordings , 2015, Front. Neurosci..

[20]  Samouil L. Farhi,et al.  All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins , 2014, Nature Methods.

[21]  B. Cui,et al.  Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials , 2014, Nature Communications.

[22]  Ki-Young Lee,et al.  Vertical nanowire probes for intracellular signaling of living cells , 2014, Nanoscale Research Letters.

[23]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[24]  Jasper Akerboom,et al.  Optimization of a GCaMP Calcium Indicator for Neural Activity Imaging , 2012, The Journal of Neuroscience.

[25]  Aviad Hai,et al.  On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. , 2012, Lab on a chip.

[26]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[27]  Eric Wei-Guang Diau,et al.  Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells , 2012 .

[28]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[29]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[30]  Theo Geisel,et al.  Model-Free Reconstruction of Excitatory Neuronal Connectivity from Calcium Imaging Signals , 2012, PLoS Comput. Biol..

[31]  Bozhi Tian,et al.  Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor , 2011, Nature nanotechnology.

[32]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[33]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[34]  G. Bi,et al.  Temporal modulation of spike-timing-dependent plasticity , 2022 .

[35]  J. Shappir,et al.  Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. , 2010, Journal of neurophysiology.

[36]  Andreas Hierlemann,et al.  Switch-Matrix-Based High-Density Microelectrode Array in CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[37]  J. Shappir,et al.  In-cell recordings by extracellular microelectrodes , 2010, Nature Methods.

[38]  J. C. Nelson,et al.  Quantal Analysis Reveals a Functional Correlation between Presynaptic and Postsynaptic Efficacy in Excitatory Connections from Rat Neocortex , 2010, The Journal of Neuroscience.

[39]  Luca Berdondini,et al.  Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. , 2009, Lab on a chip.

[40]  Norio Matsuki,et al.  Reverse optical trawling for synaptic connections in situ. , 2009, Journal of neurophysiology.

[41]  R. Peri,et al.  High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology , 2008, Nature Reviews Drug Discovery.

[42]  R. Khazipov,et al.  GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. , 2007, Physiological reviews.

[43]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[44]  Luke P. Lee,et al.  Open-access microfluidic patch-clamp array with raised lateral cell trapping sites. , 2006, Lab on a chip.

[45]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[46]  Yuji Ikegaya,et al.  Synfire Chains and Cortical Songs: Temporal Modules of Cortical Activity , 2004, Science.

[47]  D. Schmitt-Landsiedel,et al.  A 128 /spl times/ 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[48]  B. Eversmann,et al.  A 128 × 128 CMOS bio-sensor array for extracellular recording of neural activity , 2003 .

[49]  Robert H Blick,et al.  Whole cell patch clamp recording performed on a planar glass chip. , 2002, Biophysical journal.

[50]  Peter Fromherz,et al.  Extracellular recording with transistors and the distribution of ionic conductances in a cell membrane , 1999, European Biophysics Journal.

[51]  M. Poo,et al.  Propagation of activity-dependent synaptic depression in simple neural networks , 1997, Nature.

[52]  Peter Fromherz SELF-GATING OF ION CHANNELS IN CELL ADHESION , 1997 .

[53]  W. Regehr,et al.  Timing of neurotransmission at fast synapses in the mammalian brain , 1996, Nature.

[54]  R. Nicoll,et al.  Long-term potentiation is associated with increases in quantal content and quantal amplitude , 1992, Nature.

[55]  W. Pickard Generalizations of the goldman hodgkin katz equation , 1976 .