Distortion and quality measures for validating and generating high-order tetrahedral meshes

A procedure to quantify the distortion (quality) of a high-order mesh composed of curved tetrahedral elements is presented. The proposed technique has two main applications. First, it can be used to check the validity and quality of a high-order tetrahedral mesh. Second, it allows the generation of curved meshes composed of valid and high-quality high-order tetrahedral elements. To this end, we describe a method to smooth and untangle high-order tetrahedral meshes simultaneously by minimizing the proposed mesh distortion. Moreover, we present a $$p$$p-continuation procedure to improve the initial configuration of a high-order mesh for the optimization process. Finally, we present several results to illustrate the two main applications of the proposed technique.

[1]  Va,et al.  Improved error and work estimates for high-order elements , 2013 .

[2]  J. Remacle,et al.  The Influence of Geometric Approximation on the Accuracy of High Order Methods , 2002 .

[3]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[4]  Abel Gargallo Peiró Validation and generation of curved meshes for high-order unstructured methods , 2014 .

[5]  Theodore H. H. Pian,et al.  Inverse mapping and distortion measures for quadrilaterals with curved boundaries , 1994 .

[6]  Xevi Roca,et al.  Defining Quality Measures for High-Order Planar Triangles and Curved Mesh Generation , 2011, IMR.

[7]  S. Sherwin,et al.  From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements , 2011 .

[8]  Robert M. O'Bara,et al.  Towards curvilinear meshing in 3D: the case of quadratic simplices , 2001, Comput. Aided Des..

[9]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[10]  S. Sherwin,et al.  Mesh generation in curvilinear domains using high‐order elements , 2002 .

[11]  Xevi Roca,et al.  Defining Quality Measures for Mesh Optimization on Parameterized CAD Surfaces , 2012, IMR.

[12]  David A. Field Algorithms for determining invertible two‐ and three‐dimensional quadratic isoparametric finite element transformations , 1983 .

[13]  A. U.S.,et al.  Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics , 2009 .

[14]  A. Z. Salem,et al.  Mid-node admissible spaces for quadratic triangular arbitrarily curved 2D finite elements , 2001 .

[15]  M. Shephard,et al.  Geometry representation issues associated with p-version finite element computations , 1997 .

[16]  Antonio Huerta,et al.  Are High-order and Hybridizable Discontinuous Galerkin methods competitive ? , 2012 .

[17]  Antonio Huerta,et al.  NURBS-Enhanced Finite Element Method ( NEFEM ) A Seamless Bridge Between CAD and FEM , 2012 .

[18]  M. Baart,et al.  A note on invertible two-dimensional quadratic finite element transformations , 1987 .

[19]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[20]  Christophe Geuzaine,et al.  Robust untangling of curvilinear meshes , 2013, J. Comput. Phys..

[21]  Rainald Löhner,et al.  Error and work estimates for high‐order elements , 2011 .

[22]  Robert M. O'Bara,et al.  Automatic p-version mesh generation for curved domains , 2004, Engineering with Computers.

[23]  S. Rebay,et al.  High-Order Accurate Discontinuous Finite Element Solution of the 2D Euler Equations , 1997 .

[24]  Sunil Saigal,et al.  Mid-Node Admissible Space for 3D Quadratic Tetrahedral Finite Elements , 2001, Engineering with Computers.

[25]  George M. Phillips,et al.  Forbidden Shapes in the Finite Element Method , 1971 .

[26]  Sailkat Dey,et al.  Curvilinear Mesh Generation in 3D , 1999, IMR.

[27]  Rainald Löhner,et al.  Improved error and work estimates for high‐order elements , 2013 .

[28]  Paul-Louis George,et al.  Construction of tetrahedral meshes of degree two , 2012 .

[29]  Xevi Roca,et al.  A surface mesh smoothing and untangling method independent of the CAD parameterization , 2013 .

[30]  Robert M. O'Bara,et al.  p-Version Mesh Generation Issues , 2002, IMR.

[31]  Stephen A. Vavasis,et al.  A log-barrier method for mesh quality improvement and untangling , 2012, Engineering with Computers.

[32]  Patrick M. Knupp Label-Invariant Mesh Quality Metrics , 2009, IMR.

[33]  K. Morgan,et al.  The generation of arbitrary order curved meshes for 3D finite element analysis , 2013 .

[34]  Spencer J. Sherwin,et al.  From h to p Efficiently: Selecting the Optimal Spectral/hp Discretisation in Three Dimensions , 2011 .

[35]  J. Shewchuk What Is a Good Linear Finite Element? Interpolation, Conditioning, Anisotropy, and Quality Measures , 2002 .

[36]  D. A. Field Qualitative measures for initial meshes , 2000 .

[37]  P. Knupp Algebraic mesh quality metrics for unstructured initial meshes , 2003 .

[38]  Robert M. O'Bara,et al.  Adaptive mesh generation for curved domains , 2005 .

[39]  J. M. González-Yuste,et al.  Simultaneous untangling and smoothing of tetrahedral meshes , 2003 .

[40]  Xevi Roca,et al.  Defining Quality Measures for Validation and Generation of High-Order Tetrahedral Meshes , 2013, IMR.

[41]  Suzanne M. Shontz,et al.  A log-barrier method for mesh quality improvement and untangling , 2012, Engineering with Computers.

[42]  Christophe Geuzaine,et al.  Geometrical validity of curvilinear finite elements , 2011, J. Comput. Phys..

[43]  Francisco Javier Roca Navarro,et al.  Optimization of a regularized distortion measure to generate curved high‐order unstructured tetrahedral meshes , 2015 .

[44]  A. Huerta,et al.  NURBS-Enhanced Finite Element Method (NEFEM) , 2011 .

[45]  L. Demkowicz,et al.  CONTROL OF GEOMETRY INDUCED ERROR IN hp FINITE ELEMENT(FE) SIMULATIONS I. EVALUATION OF FE ERROR FOR CURVILINEAR GEOMETRIES , 2005 .

[46]  J. Peraire,et al.  Efficiency of high‐order elements for continuous and discontinuous Galerkin methods , 2013 .

[47]  Graham F. Carey,et al.  Extension of a Mesh Quality Metric for Elements With a Curved Boundary Edge or Surface , 2005, J. Comput. Inf. Sci. Eng..

[48]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..