Document Content Analysis Based on Random Forest Algorithm

[1]  Jonathan L. Goodall,et al.  Using Random Forest Classification and Nationally Available Geospatial Data to Screen for Wetlands over Large Geographic Regions , 2019, Water.

[2]  Omar Zakaria,et al.  Text analytics of unstructured textual data: A study on military peacekeeping document using R text mining package , 2017 .

[3]  Dunja Mladenic,et al.  Visualization of Text Document Corpus , 2005, Informatica.

[4]  Hamid R. Tizhoosh,et al.  Automatic Classification of Pathology Reports using TF-IDF Features , 2019, ArXiv.

[5]  Angela Siew Hoong Lee,et al.  A case study in knowledge acquisition for logistic cargo distribution data mining framework , 2018 .

[6]  James G. Scott,et al.  Priors for Random Count Matrices Derived from a Family of Negative Binomial Processes , 2014, 1404.3331.

[7]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[8]  Amanda J. Bayless,et al.  Performance of Random Forest Machine Learning Algorithms in Binary Supernovae Classification , 2019, 1907.00088.

[9]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .

[10]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .

[11]  Arno De Caigny,et al.  A new hybrid classification algorithm for customer churn prediction based on logistic regression and decision trees , 2018, Eur. J. Oper. Res..

[12]  Zuraini Zainol,et al.  VisualUrText: A Text Analytics Tool for Unstructured Textual Data , 2018 .

[13]  Vipin Kumar,et al.  Introduction to Data Mining , 2022, Data Mining and Machine Learning Applications.