DNA rearrangements and phenotypic switching in prokaryotes

Microorganisms have numerous strategies for coping with environmental changes. In many systems, a single cell has the capacity to generate a seemingly infinite array of phenotypic variants in just a few generations of growth. The resulting heterogeneous population is well equipped for sudden environmental change; even if only a few cells in the population possess a phenotype needed for survival, these cells have the capacity to regenerate a similarly diverse population. Phenotypic switching in these systems usually results from high‐frequency DNA rearrangements which are the subject of this review.

[1]  N. Davidson,et al.  Heteroduplex structures of bacteriophage Mu DNA. , 1973, Virology.

[2]  R. Losick,et al.  The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. , 1990, Genes & development.

[3]  H. Seifert,et al.  Growth conditions mediate differential transcription of fim genes involved in phase variation of type 1 pili , 1992, Journal of bacteriology.

[4]  B. Wren A family of clostridial and streptococcal ligand‐binding proteins with conserved C‐terminal repeat sequences , 1991, Molecular microbiology.

[5]  A. Piekarowicz,et al.  Cloning and linkage analysis of Neisseria gonorrhoeae DNA methyltransferases , 1992, Journal of bacteriology.

[6]  R. Plasterk,et al.  DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Phillips,et al.  Noncomplementary DNA double-strand-break rejoining in bacterial and human cells. , 1993, Nucleic acids research.

[8]  T. Bickle,et al.  A possible role for DNA restriction in bacterial evolution. , 1986, Microbiological sciences.

[9]  Su-ryang Kim,et al.  Nucleotide sequence of the R721 shufflon , 1992, Journal of bacteriology.

[10]  T. Komano,et al.  Distribution of shufflon among IncI plasmids , 1987, Journal of bacteriology.

[11]  F. Rozsa,et al.  Interesting sequence differences between the pilin gene inversion regions of Moraxella lacunata ATCC 17956 and Moraxella bovis Epp63 , 1991, Journal of bacteriology.

[12]  V. Deretic,et al.  A procaryotic regulatory factor with a histone H1-like carboxy-terminal domain: clonal variation of repeats within algP, a gene involved in regulation of mucoidy in Pseudomonas aeruginosa , 1990, Journal of bacteriology.

[13]  A. Häusler,et al.  Genome rearrangement and genetic instability in Streptomyces spp , 1990, Journal of bacteriology.

[14]  N. Davidson,et al.  Structure of inserted bacteriophage Mu-1 DNA and physical mapping of bacterial genes by Mu-1 DNA insertion. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[15]  R. Coppel,et al.  Repetitive proteins and genes of malaria. , 1987, Annual review of microbiology.

[16]  K. Dybvig,et al.  High‐frequency rearrangements in the chromosome of Mycoplasma pulmonis correlate with phenotypic switching , 1992, Molecular microbiology.

[17]  H. Goodrich-Blair,et al.  Protein introns: A new home for endonucleases , 1992, Cell.

[18]  B. Robertson,et al.  Genetic variation in pathogenic bacteria. , 1992, Trends in genetics : TIG.

[19]  F. Mooi,et al.  Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. , 1990, The EMBO journal.

[20]  M. S. McClain,et al.  Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12 , 1993, Journal of bacteriology.

[21]  M. S. McClain,et al.  Type 1 fimbriation and fimE mutants of Escherichia coli K-12 , 1991, Journal of bacteriology.

[22]  S. Morrison,et al.  Piliation changes in transformation-defective gonococci , 1990, The Journal of experimental medicine.

[23]  L. Chow,et al.  The invertible DNA segments of coliphages Mu and P1 are identical. , 1976, Virology.

[24]  M. Belfort Self-splicing introns in prokaryotes: Migrant fossils? , 1991, Cell.

[25]  T. Schwan,et al.  Recombination between genes encoding major outer surface proteins A and B of Borrelia burgdorferi , 1992, Molecular microbiology.

[26]  R. D'ari,et al.  The leucine-Lrp regulon in E. coli: A global response in search of a raison d'Être , 1992, Cell.

[27]  G. P. Smith,et al.  Evolution of repeated DNA sequences by unequal crossover. , 1976, Science.

[28]  J. Saunders,et al.  Mechanism of intramolecular recyclization and deletion formation following transformation of Escherichia coli with linearized plasmid DNA. , 1986, Nucleic Acids Research.

[29]  J. Swanson,et al.  The role of direct oligonucleotide repeats in gonococcal pilin gene variation , 1990, Molecular microbiology.

[30]  R. C. Johnson,et al.  The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. , 1990, Science.

[31]  E. Chen,et al.  A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[32]  G. Lindahl,et al.  Two major classes in the M protein family in group A streptococci. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Barbour,et al.  Subtelomeric expression regions of Borrelia hermsii linear plasmids are highly polymorphic , 1992, Molecular microbiology.

[34]  Genetic instability and associated genome plasticity in Streptomyces ambofaciens: pulsed-field gel electrophoresis evidence for large DNA alterations in a limited genomic region , 1991, Journal of bacteriology.

[35]  D. Stein,et al.  Construction of a Neisseria gonorrhoeae MS11 derivative deficient in NgoMI restriction and modification , 1992, Journal of bacteriology.

[36]  R. Gilmore Comparison of the rompA gene repeat regions of Rickettsiae reveals species-specific arrangements of individual repeating units. , 1993, Gene.

[37]  A. Barbour,et al.  Antigenic variation of a relapsing fever Borrelia species. , 1990, Annual review of microbiology.

[38]  M. Giphart-Gassler,et al.  Invertible DNA determines host specificity of bacteriophage Mu , 1980, Nature.

[39]  D. R. Allred,et al.  Molecular basis for surface antigen size polymorphisms and conservation of a neutralization-sensitive epitope in Anaplasma marginale. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[40]  K. Dyke,et al.  A DNA invertase from Staphylococcus aureus is a member of the Hin family of site-specific recombinases , 1988 .

[41]  S. DasSarma,et al.  Structure of the gas vesicle plasmid in Halobacterium halobium: inversion isomers, inverted repeats, and insertion sequences , 1991, Journal of bacteriology.

[42]  G. Dunny,et al.  Genetics and Molecular Biology of Streptococci, Lactococci, and Enterococci , 1991 .

[43]  T. Meyer,et al.  Transformation-mediated exchange of virulence determinants by co-cultivation of pathogenic Neisseriae. , 1992, FEMS microbiology letters.

[44]  R. Ellis,et al.  Identification of a family of bacteriophage T4 genes encoding proteins similar to those present in group I introns of fungi and phage. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[45]  G. Levinson,et al.  High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12 , 1987, Nucleic Acids Res..

[46]  M. S. McClain,et al.  Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli , 1991, Journal of bacteriology.

[47]  N. Craig,et al.  The mechanism of conservative site-specific recombination. , 1988, Annual review of genetics.

[48]  C. Ball,et al.  Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli , 1992, Journal of bacteriology.

[49]  R. Haselkorn Developmentally regulated gene rearrangements in prokaryotes. , 1992, Annual review of genetics.

[50]  D. Guiney,et al.  A site-specific DNA inversion in Bacteroides plasmid pBF4 is influenced by the presence of the conjugal tetracycline resistance element , 1991, Journal of bacteriology.

[51]  T. Bickle,et al.  Biology of DNA restriction. , 1993, Microbiological reviews.

[52]  B. Dujon,et al.  Group I introns as mobile genetic elements: facts and mechanistic speculations--a review. , 1989, Gene.

[53]  L. R. Finch,et al.  Mycoplasmas: molecular biology and pathogenesis. , 1992 .

[54]  H. Seifert,et al.  Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[55]  V. Fischetti,et al.  Spontaneous M6 protein size mutants of group A streptococci display variation in antigenic and opsonogenic epitopes. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[56]  T. Meyer,et al.  Silent pilin genes of Neisseria gonorrhoeae MS11 and the occurrence of related hypervariant sequences among other gonococcal isolates , 1992, Molecular microbiology.

[57]  D. Sherratt,et al.  Catalysis by site-specific recombinases. , 1992, Trends in genetics : TIG.

[58]  MATING-TYPE GENE SWITCHING IN SACCHAROMYCES CEREVISIAE , 1992 .

[59]  Xiangwu Nou,et al.  Regulation of pyelonephritis‐associated pili phase‐variation in Escherichia coli: binding of the Papl and the Lrp regulatory proteins is controlled by DNA methylation , 1993, Molecular microbiology.

[60]  J. Roth,et al.  Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Bergström,et al.  Effects of recA mutations on pilus antigenic variation and phase transitions in Neisseria gonorrhoeae. , 1987, Genetics.