Simple tools for fiber orientation prediction in industrial practice

Abstract In this paper, the two origins of the preferred orientation of fibers are first reviewed. We then propose a definition of what to call an oriented fiber from a practical point of view in the cementitious material field. Considering typical industrial flows and materials, we identify the dominant phenomena and orientation characteristic time involved in the fiber orientation process in the construction industry. We show that shear induced fiber orientation is almost instantaneous at the time scale of a typical casting process. We moreover emphasize the fact that shear induced orientation is far stronger in the case of fluid materials such as self compacting concretes. The proposed approach is validated on experimental measurements in a simple channel flow. Finally, a semi-empirical relation allowing for the prediction of the average orientation factor in a section as a function of the rheological behavior, the length of the fibers and the geometry of the element to be cast is proposed.

[1]  Nicolas Roussel,et al.  Correlation between Yield Stress and Slump: Comparison between Numerical Simulations and Concrete Rheometers Results , 2005 .

[2]  Surendra P. Shah,et al.  Monitoring fiber dispersion in fiber-reinforced cementitious materials: Comparison of AC-impedance spectroscopy and image analysis , 2006 .

[3]  Surendra P. Shah,et al.  Non-destructive monitoring of fiber orientation using AC-IS: An industrial-scale application , 2006 .

[4]  C.V.S. Kameswara Rao,et al.  Effectiveness of random fibres in composites , 1979 .

[5]  D. Koch,et al.  Structure and properties of sheared fiber suspensions with mechanical contacts , 1997 .

[6]  Peter A. Jones,et al.  Spatial distribution of steel fibres in sprayed and cast concrete , 2003 .

[7]  François de Larrard,et al.  The rheology of fresh high-performance concrete , 1996 .

[8]  Patrick Stähli,et al.  Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete , 2007 .

[9]  Liberato Ferrara,et al.  High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation , 2011 .

[10]  A. Aguado,et al.  Predicting the pullout response of inclined straight steel fibers , 2010 .

[11]  Antoine E. Naaman,et al.  Pull-Out Mechanism in Steel Fiber-Reinforced Concrete , 1976 .

[12]  N. Suryanarayana,et al.  Ion‐exchange membranes based on rubber , 1963 .

[13]  Nathan Shapiro,et al.  Optimal steel fiber strength for reinforcement of cementitious materials , 1999 .

[14]  E. J. Hinch,et al.  The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles , 1972, Journal of Fluid Mechanics.

[15]  Bensaid Boulekbache,et al.  Influence de la rhéologie des bétons renforcés de fibres métalliques sur leurs propriétés mécaniques , 2009 .

[16]  Robert C. Armstrong,et al.  A Rheological Equation of State for Semiconcentrated Fiber Suspensions , 1984 .

[17]  Robert C. Armstrong,et al.  Shear Flow Properties of Semiconcentrated Fiber Suspensions , 1985 .

[18]  Sofiane Amziane,et al.  Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material , 2010 .

[19]  Frederick R. Eirich,et al.  Rheology : theory and applications , 1956 .

[20]  Ann Van Gysel Studie van het uittrekgedrag van staalvezels ingebed in een cementgebonden matrix met toepassing op staalvezelbeton onderworpen aan buiging / Ann van Gysel. , 2000 .

[21]  Nicolas Roussel,et al.  A thixotropy model for fresh fluid concretes: Theory, validation and applications , 2006 .

[22]  Eric S. G. Shaqfeh,et al.  The effect of hydrodynamic interactions on the orientation distribution in a fiber suspension subject to simple shear flow , 1995 .

[23]  Nicolas Roussel,et al.  Rheology of Fiber Reinforced Cementitious Materials: Classification and Prediction , 2010 .

[24]  Claude Cohen,et al.  An experimental determination of the stress–microstructure relationship in semi-concentrated fiber suspensions , 2000 .

[25]  F. Gauthier,et al.  The kinetics of flowing dispersions , 1967 .

[26]  A. Neville Fibre reinforced cement and concrete , 1975 .

[27]  Liberato Ferrara,et al.  Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements , 2005 .

[28]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[29]  Lucie Vandewalle,et al.  Distribution of steel fibres in rectangular sections , 2005 .

[30]  Parviz Soroushian,et al.  DISTRIBUTION AND ORIENTATION OF FIBERS IN STEEL FIBER REINFORCED CONCRETE , 1990 .

[31]  Phillip Frank Gower Banfill,et al.  The rheology of fresh concrete , 1983 .

[32]  Xxyyzz Proceedings of the American Society of Civil Engineers , 1896 .

[33]  Christopher K.Y. Leung,et al.  Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites , 1992 .

[34]  N. Roussel,et al.  Correlation between L-box test and rheological parameters of a homogeneous yield stress fluid , 2006 .

[35]  R. N. Swamy,et al.  Fibre reinforcement of cement and concrete , 1975 .

[36]  I. Marković,et al.  High-Performance Hybrid-Fibre Concrete: Development and Utilisation , 2006 .

[37]  F. Bretherton The motion of rigid particles in a shear flow at low Reynolds number , 1962, Journal of Fluid Mechanics.

[38]  Steffen Grünewald,et al.  Performance-based design of self-compacting fibre reinforced concrete , 2004 .

[39]  C. L. Tucker,et al.  Orientation Behavior of Fibers in Concentrated Suspensions , 1984 .

[40]  A. Kelly,et al.  Theory of multiple fracture of fibrous composites , 1973 .

[41]  Steve Millard,et al.  Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength , 2010 .

[42]  J. Morton,et al.  The cracking of composites consisting of discontinuous ductile fibres in a brittle matrix — effect of fibre orientation , 1974 .

[43]  Nicolas Roussel,et al.  The LCPC BOX: a cheap and simple technique for yield stress measurements of SCC , 2007 .

[44]  Nicolas Roussel,et al.  From ordinary rhelogy concrete to self compacting concrete: A transition between frictional and hydrodynamic interactions , 2008 .

[45]  David V. Boger,et al.  The flow of fiber suspensions in complex geometries , 1988 .

[46]  Nicolas Roussel,et al.  Rheology of fresh concrete: from measurements to predictions of casting processes , 2007 .

[47]  Bhushan Lal Karihaloo,et al.  CARDIFRC - development and mechanical properties. Part II: fibre distribution , 2005 .