Particle-based simulation: An algorithmic perspective

This article reviews some of the latest advances of the algorithmic aspects of particle-based methods for the simulation of both solid-state devices and biological systems. After a brief historical introduction, a discussion will be offered about the recent evolution of numerical methods used by both Full-Band Ensemble Monte Carlo (EMC) and Molecular Dynamics (MD) algorithms. A discussion of some relevant applications of both simulative approaches is accompanied by a critical analysis of the main limitations of the methods. Several needed improvements are discussed as well, and the potential of the algorithms for modeling systems of higher complexity.

[1]  M. Saraniti,et al.  The Simulation of Ionic Charge Transport in Biological Ion Channels: An Introduction to Numerical Methods , 2006 .

[2]  Karl Hess,et al.  Band-structure-dependent transport and impact ionization in GaAs , 1981 .

[3]  B. Roux,et al.  Statistical mechanical equilibrium theory of selective ion channels. , 1999, Biophysical journal.

[4]  Benoît Roux,et al.  On the potential functions used in molecular dynamics simulations of ion channels. , 2002, Biophysical journal.

[5]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[6]  S. Laux,et al.  Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. , 1988, Physical review. B, Condensed matter.

[7]  E Jakobsson,et al.  Using theory and simulation to understand permeation and selectivity in ion channels. , 1998, Methods.

[8]  M. Saraniti,et al.  3D biconjugate gradient-multi grid coupling schemes for field equations in semiconductor device simulation , 2002 .

[9]  B. Roux,et al.  Energetics of ion conduction through the K + channel , 2022 .

[10]  T. P. Straatsma,et al.  Free Energy by Molecular Simulation , 2007 .

[11]  Peter L. Freddolino,et al.  Molecular dynamics simulations of the complete satellite tobacco mosaic virus. , 2006, Structure.

[12]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[13]  B. Roux,et al.  A microscopic view of ion conduction through the K+ channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Alexander D. MacKerell,et al.  Computational Biochemistry and Biophysics , 2001 .

[15]  M. Saraniti,et al.  Coupling Maxwell's Equations to Full Band Particle-Based Simulators , 2003 .

[16]  I. Shrivastava,et al.  Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. , 2000, Biophysical journal.

[17]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[18]  W. L. Jorgensen Revised TIPS for simulations of liquid water and aqueous solutions , 1982 .

[19]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[20]  E Jakobsson,et al.  The nature of ion and water barrier crossings in a simulated ion channel. , 1993, Biophysical journal.

[21]  Herman J. C. Berendsen,et al.  Molecular Dynamics Simulations: The Limits and Beyond , 1999, Computational Molecular Dynamics.

[22]  J. Branlard,et al.  Full-Band Particle-Based Analysis of Device Scaling for 3D Tri-Gate FETs , 2004, 2004 Abstracts 10th International Workshop on Computational Electronics.

[23]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[24]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[25]  David K. Ferry,et al.  Overshoot saturation in ultra-submicron FETs due to minimum acceleration lengths , 1989 .

[26]  K. Hess,et al.  Impact ionization of electrons in silicon (steady state) , 1983 .

[27]  W. Im,et al.  Ions and counterions in a biological channel: a molecular dynamics simulation of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution. , 2002, Journal of molecular biology.

[28]  B. Roux,et al.  Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. , 2000, Biophysical journal.

[29]  Abraham Nitzan,et al.  The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents. , 2003, Biophysical journal.

[30]  A. Wallqvist,et al.  Molecular Models of Water: Derivation and Description , 2007 .

[31]  M. Saraniti,et al.  Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors , 2000 .

[32]  R. Warriner,et al.  Computer simulation of gallium arsenide field-effect transistors using Monte-Carlo methods , 1977 .

[33]  Paolo Lugli,et al.  An efficient multigrid Poisson solver for device simulations , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[34]  R. MacKinnon,et al.  Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution , 2001, Nature.

[35]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[36]  S. E. Laux Techniques for small-signal analysis of semiconductor devices , 1985 .