Cure Rate Quantile Regression for Censored Data With a Survival Fraction

Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods. The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example. Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.

[1]  Zhiliang Ying,et al.  On semiparametric transformation cure models , 2004 .

[2]  V. Farewell,et al.  The use of mixture models for the analysis of survival data with long-term survivors. , 1982, Biometrics.

[3]  J. Powell,et al.  Least absolute deviations estimation for the censored regression model , 1984 .

[4]  Yingwei Peng,et al.  Accelerated hazards mixture cure model , 2009, Lifetime data analysis.

[5]  Z. Ying,et al.  Checking the Cox model with cumulative sums of martingale-based residuals , 1993 .

[6]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[7]  Stephen Portnoy,et al.  Correction to Censored Regression Quantiles by S. Portnoy, 98 (2003), 1001–1012 , 2006 .

[8]  R. Gill,et al.  A Survey of Product-Integration with a View Toward Application in Survival Analysis , 1990 .

[9]  S. Portnoy,et al.  Partially linear censored quantile regression , 2009, Lifetime data analysis.

[10]  Stephen Portnoy,et al.  Censored Regression Quantiles , 2003 .

[11]  Wenbin Lu,et al.  EFFICIENT ESTIMATION FOR AN ACCELERATED FAILURE TIME MODEL WITH A CURE FRACTION. , 2010, Statistica Sinica.

[12]  Joseph G. Ibrahim,et al.  Semiparametric Transformation Models for Survival Data With a Cure Fraction , 2006 .

[13]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[14]  R. Koenker,et al.  Regression Quantiles , 2007 .

[15]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[16]  Asymptotic properties of conditional distribution estimator with truncated, censored and dependent data , 2012 .

[17]  Limin Peng,et al.  Survival Analysis With Quantile Regression Models , 2008 .

[18]  Donglin Zeng,et al.  Efficient Estimation for the Accelerated Failure Time Model , 2007 .

[19]  Lan Wang,et al.  Locally Weighted Censored Quantile Regression , 2009 .

[20]  Hui Li,et al.  Power-Transformed Linear Quantile Regression With Censored Data , 2008 .

[21]  Jianguo Sun,et al.  Maximum Likelihood Estimation in a Semiparametric Logistic/Proportional‐Hazards Mixture Model , 2005 .

[22]  Bo E. Honoré,et al.  Quantile regression under random censoring , 2002 .

[23]  G. Dunteman,et al.  Maximum Likelihood Estimation , 2006 .

[24]  Limin Peng,et al.  Censored quantile regression with partially functional effects , 2010 .

[25]  Zhiliang Ying,et al.  Survival analysis with median regression models , 1995 .

[26]  J. P. Sy,et al.  Estimation in a Cox Proportional Hazards Cure Model , 2000, Biometrics.

[27]  J. Horowitz Bootstrap Methods for Median Regression Models , 1996 .

[28]  Stephen Portnoy,et al.  Asymptotics for censored regression quantiles , 2010 .

[29]  Meng Mao,et al.  Semiparametric Efficient Estimation for a Class of Generalized Proportional Odds Cure Models , 2010, Journal of the American Statistical Association.

[30]  Z. Ying,et al.  A simple resampling method by perturbing the minimand , 2001 .

[31]  Zhiliang Ying,et al.  Simple resampling methods for censored regression quantiles , 2000 .

[32]  J P Klein,et al.  Results of allogeneic bone marrow transplants for leukemia using donors other than HLA-identical siblings. , 1997, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  K. Dear,et al.  A Nonparametric Mixture Model for Cure Rate Estimation , 2000, Biometrics.

[34]  Song Yang,et al.  Censored Median Regression Using Weighted Empirical Survival and Hazard Functions , 1999 .

[35]  Y. Ritov,et al.  Monotone Estimating Equations for Censored Data , 1994 .

[36]  Vernon T. Farewell,et al.  Mixture models in survival analysis: Are they worth the risk? , 1986 .

[37]  Yijian Huang,et al.  QUANTILE CALCULUS AND CENSORED REGRESSION. , 2010, Annals of statistics.

[38]  Xiaohong Chen,et al.  Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .

[39]  Wenbin Lu,et al.  Maximum likelihood estimation in the proportional hazards cure model , 2008 .

[40]  D.,et al.  Regression Models and Life-Tables , 2022 .

[41]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[42]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[43]  Thomas Brox,et al.  Maximum Likelihood Estimation , 2019, Time Series Analysis.

[44]  Anastasios A Tsiatis,et al.  Median Regression with Censored Cost Data , 2002, Biometrics.

[45]  J. Hahn Bootstrapping Quantile Regression Estimators , 1995, Econometric Theory.

[46]  R. Koenker Quantile Regression: Name Index , 2005 .

[47]  D. Harrington,et al.  Counting Processes and Survival Analysis , 1991 .

[48]  Ying Qing Chen,et al.  Analysis of Accelerated Hazards Models , 2000 .

[49]  Anthony Y. C. Kuk,et al.  A mixture model combining logistic regression with proportional hazards regression , 1992 .

[50]  W. Barlow,et al.  Residuals for relative risk regression , 1988 .

[51]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[52]  Huixia Judy Wang,et al.  VARIABLE SELECTION FOR CENSORED QUANTILE REGRESION. , 2013, Statistica Sinica.

[53]  Chin-Shang Li,et al.  Identifiability of cure models , 2001 .

[54]  Moshe Buchinsky Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study , 1995 .