An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel

This paper provides a closed-form expression for the secrecy capacity of the multiple-input multiple output (MIMO) Gaussian wiretap channel, under a power-covariance constraint. Furthermore, the paper specifies the input covariance matrix required in order to attain the capacity. The proof uses the fundamental relationship between information theory and estimation theory in the Gaussian channel, relating the derivative of the mutual information to the minimum mean-square error (MMSE). The proof provides the missing intuition regarding the existence and construction of an enhanced degraded channel that does not increase the secrecy capacity. The concept of enhancement has been used in a previous proof of the problem. Furthermore, the proof presents methods that can be used in proving other MIMO problems, using this fundamental relationship.

[1]  Shlomo Shamai,et al.  Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.

[2]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  T. Apostol Multi-variable calculus and linear algebra, with applications to differential equations and probability , 1969 .

[5]  Antonia Maria Tulino,et al.  Monotonic Decrease of the Non-Gaussianness of the Sum of Independent Random Variables: A Simple Proof , 2006, IEEE Transactions on Information Theory.

[6]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[7]  Daniel Pérez Palomar,et al.  Gradient of mutual information in linear vector Gaussian channels , 2006, IEEE Transactions on Information Theory.

[8]  Antonia Maria Tulino,et al.  Optimum power allocation for parallel Gaussian channels with arbitrary input distributions , 2006, IEEE Transactions on Information Theory.

[9]  Shlomo Shamai,et al.  Information Theory On extrinsic information of good binary codes operating over Gaussian channels , 2007, Eur. Trans. Telecommun..

[10]  John M. Cioffi,et al.  Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design , 2008, IEEE Trans. Wirel. Commun..

[11]  Sennur Ulukus,et al.  Secrecy capacity region of the Gaussian multi-receiver wiretap channel , 2009, 2009 IEEE International Symposium on Information Theory.

[12]  Shlomo Shamai,et al.  Proof of Entropy Power Inequalities Via MMSE , 2006, 2006 IEEE International Symposium on Information Theory.

[13]  Shlomo Shamai,et al.  Multiple-Input Multiple-Output Gaussian Broadcast Channels With Confidential Messages , 2009, IEEE Transactions on Information Theory.

[14]  Dinh Van Huynh,et al.  Algebra and Its Applications , 2006 .

[15]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[16]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[17]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[18]  Gregory W. Wornell,et al.  The MIMOME Channel , 2007, ArXiv.

[19]  D. C. Dodder R-Matrix Analysis , 1976 .

[20]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2008, ISIT.

[21]  Shlomo Shamai,et al.  Information Theoretic Security , 2009, Found. Trends Commun. Inf. Theory.