Genome-Wide Comparative Analysis of Miniature Inverted Repeat Transposable Elements in 19 Arabidopsis thaliana Ecotype Accessions

[1]  Q. Li,et al.  A Genome-wide Study of “Non-3UTR” Polyadenylation Sites in Arabidopsis thaliana , 2016, Scientific Reports.

[2]  G. Mayhew,et al.  The Arabidopsis thaliana mobilome and its impact at the species level , 2016, eLife.

[3]  Guoli Ji,et al.  detectMITE: A novel approach to detect miniature inverted repeat transposable elements in genomes , 2016, Scientific Reports.

[4]  J. Heslop-Harrison,et al.  Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica , 2015, Molecular Genetics and Genomics.

[5]  J. Zou,et al.  Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae , 2015, BMC Plant Biology.

[6]  Zeyang Zhou,et al.  Identification, Diversity and Evolution of MITEs in the Genomes of Microsporidian Nosema Parasites , 2015, PloS one.

[7]  Tae-Jin Yang,et al.  Miniature Inverted-repeat Transposable Elements (MITEs) as Valuable Genomic Resources for the Evolution and Breeding of Brassica Crops , 2014 .

[8]  Huiru Peng,et al.  A MITE insertion into the 3′-UTR regulates the transcription of TaHSP16.9 in common wheat , 2014 .

[9]  Michelle C. Stitzer,et al.  Transposable Elements Contribute to Activation of Maize Genes in Response to Abiotic Stress , 2014, bioRxiv.

[10]  Beom-Soon Choi,et al.  BrassicaTED - a public database for utilization of miniature transposable elements in Brassica species , 2014, BMC Research Notes.

[11]  K. Shirasawa,et al.  Genome-Wide Comparative Analysis of 20 Miniature Inverted-Repeat Transposable Element Families in Brassica rapa and B. oleracea , 2014, PloS one.

[12]  Ting Wang,et al.  Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser , 2013, Bioinform..

[13]  Yu Zhang,et al.  P-MITE: a database for plant miniature inverted-repeat transposable elements , 2013, Nucleic Acids Res..

[14]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[15]  Koichiro Tamura,et al.  MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.

[16]  Guojun Yang,et al.  MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements , 2013, BMC Bioinformatics.

[17]  Guojun Yang MITE Digger, an efficient and accurate algorithm for genome wide discovery of miniature inverted repeat transposable elements , 2013, BMC Bioinformatics.

[18]  Priyanka Bhardwaj,et al.  Miniature inverted-repeat transposable elements: discovery, distribution, and activity. , 2013, Genome.

[19]  Zhengwei Zhu,et al.  CD-HIT: accelerated for clustering the next-generation sequencing data , 2012, Bioinform..

[20]  Yu Zhang,et al.  Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species , 2012, Mobile genetic elements.

[21]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[22]  Yu Zhang,et al.  Miniature Inverted–Repeat Transposable Elements (MITEs) Have Been Accumulated through Amplification Bursts and Play Important Roles in Gene Expression and Species Diversity in Oryza sativa , 2011, Molecular biology and evolution.

[23]  V. Poncet,et al.  Site-Specific Insertion Polymorphism of the MITE Alex-1 in the Genus Coffea Suggests Interspecific Gene Flow , 2011, International journal of evolutionary biology.

[24]  Vipin T. Sreedharan,et al.  Multiple reference genomes and transcriptomes for Arabidopsis thaliana , 2011, Nature.

[25]  Feng Zhang,et al.  The Rice Miniature Inverted Repeat Transposable Element mPing Is an Effective Insertional Mutagen in Soybean1[C][W][OA] , 2011, Plant Physiology.

[26]  J. Joets,et al.  BraSto, a Stowaway MITE from Brassica: recently active copies preferentially accumulate in the gene space , 2011, Plant Molecular Biology.

[27]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[28]  Susan R. Wessler,et al.  MITE-Hunter: a program for discovering miniature inverted-repeat transposable elements from genomic sequences , 2010, Nucleic acids research.

[29]  S. Wessler,et al.  Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily , 2010, Mobile DNA.

[30]  Guojun Yang,et al.  Tuned for Transposition: Molecular Determinants Underlying the Hyperactivity of a Stowaway MITE , 2009, Science.

[31]  R. Mott,et al.  A Multiparent Advanced Generation Inter-Cross to Fine-Map Quantitative Traits in Arabidopsis thaliana , 2009, PLoS genetics.

[32]  R. Mott,et al.  The 1001 Genomes Project for Arabidopsis thaliana , 2009, Genome Biology.

[33]  S. Boué,et al.  Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.) , 2009, Genome biology and evolution.

[34]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[35]  Mihaela M. Martis,et al.  The Sorghum bicolor genome and the diversification of grasses , 2009, Nature.

[36]  A. Kamei,et al.  Identification of miniature inverted-repeat transposable elements (MITEs) and biogenesis of their siRNAs in the Solanaceae: new functional implications for MITEs. , 2008, Genome research.

[37]  Yutaka Okumoto,et al.  A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica. , 2008, Genes & genetic systems.

[38]  J. Jurka,et al.  A universal classification of eukaryotic transposable elements implemented in Repbase , 2008, Nature Reviews Genetics.

[39]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[40]  J. Bennetzen,et al.  A unified classification system for eukaryotic transposable elements , 2007, Nature Reviews Genetics.

[41]  L. Kochian,et al.  A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum , 2007, Nature Genetics.

[42]  Guojun Yang,et al.  Transposition of the rice miniature inverted repeat transposable element mPing in Arabidopsis thaliana , 2007, Proceedings of the National Academy of Sciences.

[43]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[44]  Céline Loot,et al.  The proteins encoded by the pogo-like Lemi1 element bind the TIRs and subterminal repeated motifs of the Arabidopsis Emigrant MITE: consequences for the transposition mechanism of MITEs , 2006, Nucleic acids research.

[45]  Guojun Yang,et al.  A Two-Edged Role for the Transposable Element Kiddo in the rice ubiquitin2 Promoterw⃞ , 2005, The Plant Cell Online.

[46]  Thomas D. Wu,et al.  GMAP: a genomic mapping and alignment program for mRNA and EST sequence , 2005, Bioinform..

[47]  S. Wessler,et al.  DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs , 2005, Nucleic acids research.

[48]  Nansheng Chen,et al.  Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences , 2009, Current protocols in bioinformatics.

[49]  S. Wright,et al.  Effects of recombination rate and gene density on transposable element distributions in Arabidopsis thaliana. , 2003, Genome research.

[50]  Ying Feng Plant MITEs: Useful Tools for Plant Genetics and Genomics , 2003, Genomics, proteomics & bioinformatics.

[51]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[52]  J. Casacuberta,et al.  Genome-wide analysis of the Emigrant family of MITEs of Arabidopsis thaliana. , 2002, Molecular biology and evolution.

[53]  Mouse Genome Sequencing Consortium Initial sequencing and comparative analysis of the mouse genome , 2002, Nature.

[54]  S. Wessler,et al.  P instability factor: An active maize transposon system associated with the amplification of Tourist-like MITEs and a new superfamily of transposases , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Morgante,et al.  Abundance, distribution, and transcriptional activity of repetitive elements in the maize genome. , 2001, Genome research.

[56]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[57]  C Brouwer,et al.  The MITE family heartbreaker (Hbr): molecular markers in maize. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[58]  C. Feschotte,et al.  Evidence that a family of miniature inverted-repeat transposable elements (MITEs) from the Arabidopsis thaliana genome has arisen from a pogo-like DNA transposon. , 2000, Molecular biology and evolution.

[59]  B. Charrier,et al.  Bigfoot. a new family of MITE elements characterized from the Medicago genus. , 1999, The Plant journal : for cell and molecular biology.

[60]  J. Bender,et al.  An inverted repeat triggers cytosine methylation of identical sequences in Arabidopsis. , 1999, Molecular cell.

[61]  A. Monfort,et al.  Presence of miniature inverted-repeat transposable elements (MITEs) in the genome of Arabidopsis thaliana: characterisation of the Emigrant family of elements. , 1998, The Plant journal : for cell and molecular biology.

[62]  Z. Tu,et al.  Three novel families of miniature inverted-repeat transposable elements are associated with genes of the yellow fever mosquito, Aedes aegypti. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  G. Fink,et al.  Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of arabidopsis , 1995, Cell.

[64]  S. Wessler,et al.  Tourist: a large family of small inverted repeat elements frequently associated with maize genes. , 1992, The Plant cell.

[65]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .