The Orlik-Solomon model for hypersurface arrangements

We develop a model for the cohomology of the complement of a hypersurface arrangement inside a smooth projective complex variety. This generalizes the case of normal crossing divisors, discovered by P. Deligne in the context of the mixed Hodge theory of smooth complex varieties. Our model is a global version of the Orlik-Solomon algebra, which computes the cohomology of the complement of a union of hyperplanes in an affine space. The main tool is the complex of logarithmic forms along a hypersurface arrangement, and its weight filtration. Connections with wonderful compactifications and the configuration spaces of points on curves are also studied.

[1]  J. Hilburn,et al.  Quadratic-linear duality and rational homotopy theory of chordal arrangements , 2014, 1409.6748.

[2]  P. Aluffi Chern classes of free hypersurface arrangements , 2012, 1201.5396.

[3]  Logarithmic sheaves attached to arrangements of hyperplanes , 2005, math/0508044.

[4]  W. Fulton,et al.  A compactification of configuration spaces , 1994 .

[5]  P. Deligne,et al.  Théorie de Hodge, II , 1971 .

[6]  J. B. Ferguson,et al.  Motives , 1983 .

[7]  S. Yuzvinsky,et al.  Orlik-Solomon algebras in algebra and topology , 2001 .

[8]  Li Li WONDERFUL COMPACTIFICATION OF AN ARRANGEMENT OF SUBVARIETIES , 2006 .

[9]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[10]  Burt Totaro,et al.  HODGE THEORY AND COMPLEX ALGEBRAIC GEOMETRY, I (Cambridge Studies in Advanced Mathematics 76) By C LAIRE V OISIN : 322 pp., £55.00 (US$80.00), ISBN 0-521-80260-1 (Cambridge University Press, 2002). , 2003 .

[11]  Leila Schneps,et al.  Hodge theory and complex algebraic geometry , 2002 .

[12]  P. Deligne Theorie de Hodge I , 1970 .

[13]  J. Morgan,et al.  The algebraic topology of smooth algebraic varieties , 1986 .

[14]  Bernd Sturmfels,et al.  The maximum likelihood degree , 2004, math/0406533.

[15]  C. Procesi,et al.  Wonderful models of subspace arrangements , 1995 .

[16]  E. Looijenga Cohomology of M3 and M1/3 , 1993 .

[17]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[18]  Jean Leray,et al.  Le calcul différentiel et intégral sur une variété analytique complexe. (Problème de Cauchy. III.) , 1959 .

[19]  Christin Bibby Cohomology of abelian arrangements , 2015 .

[20]  B. Totaro Configuration spaces of algebraic varieties , 1996 .

[21]  P. Orlik,et al.  Combinatorics and topology of complements of hyperplanes , 1980 .

[22]  F. Elzein,et al.  Mixed Hodge Structures , 2013, 1302.5811.

[23]  Egbert Brieskorn,et al.  Sur les groupes de tresses [d'après V. I. Arnol'd] , 1973 .

[24]  H. Yi A COMPACTIFICATION OF OPEN VARIETIES , 2003 .

[25]  B. M. Fulk MATH , 1992 .

[27]  Kyoji Saito Theory of logarithmic differential forms and logarithmic vector fields , 1980 .

[28]  I. Kríz On the rationality homotopy type of configuration spaces , 1994 .