Maximum Likelihood and Bayesian Estimation of Transition Probabilities

Abstract In this paper, maximum likelihood and Bayesian methods are presented for estimating transition probabilities when data in the form of aggregated proportions are available. The probability function for the observed proportions is assumed to have a multinomial distribution under the Lexis scheme. The multivariate beta distribution is used as the prior probability density function in formulating the Bayesian estimator. The results of some Monte Carlo experiments provide some evidence on the sampling properties of several alternative estimators.

[1]  A. R. Crathorne,et al.  Handbook of mathematical statistics , 1926 .

[2]  G. A. Miller Finite markov processes in psychology , 1952 .

[3]  J. Durbin A Note on Regression When There is Extraneous Information About One of the Coefficients , 1953 .

[4]  Note on Miller's “Finite Markov Processes in Psychology” , 1953 .

[5]  Leo A. Goodman,et al.  A further note on “Finite Markov Processes in Psychology” , 1953 .

[6]  P. Hoel,et al.  Introduction to Mathematical Statistics. Second Edition. , 1955 .

[7]  Philip Wolfe,et al.  An algorithm for quadratic programming , 1956 .

[8]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[9]  T. W. Anderson,et al.  Statistical Inference about Markov Chains , 1957 .

[10]  Maurice G. Kendall The advanced theory of statistics , 1958 .

[11]  J. G. Mauldon,et al.  A GENERALIZATION OF THE BETA-DISTRIBUTION' , 1959 .

[12]  P. Wolfe THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING , 1959 .

[13]  Albert Madansky,et al.  Least squares estimation in finite Markov processes , 1959 .

[14]  Robert V. Hogg,et al.  Introduction to Mathematical Statistics. , 1966 .

[15]  Samuel Karlin,et al.  Mathematical Methods and Theory in Games, Programming, and Economics , 1961 .

[16]  Abraham Charnes,et al.  Management Models and Industrial Applications of Linear Programming , 1961 .

[17]  E. Johnsen A. Charnes and W. W. Cooper: Management Models and Industrial Applications of linear Programming, Vol. I. and Vol. II, ialt 859 sider. John Wiley and Sons, Inc. London 1961. lait 183 sh/-. , 1962 .

[18]  A. Zellner An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias , 1962 .

[19]  H. Theil On the Use of Incomplete Prior Information in Regression Analysis , 1963 .

[20]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[21]  Arnold Zellner,et al.  On the Bayesian Estimation of Multivariate Regression , 1964 .

[22]  Arnold Zellner,et al.  BAYESIAN ANALYSIS OF THE REGRESSION MODEL WITH AUTOCORRELATED ERRORS. , 1964 .

[23]  G. C. Tiao,et al.  Bayes's theorem and the use of prior knowledge in regression analysis , 1964 .

[24]  George G. Judge,et al.  On Estimating the Transition Probabilities of a Markov Process , 1965 .

[25]  Arnold Zellner,et al.  JOINT ESTIMATION OF RELATIONSHIPS INVOLVING DISCRETE RANDOM VARIABLES , 1965 .

[26]  Robert Summers,et al.  A Capital-Intensive Approach to the Small Sample Properties of Various Simultaneous Equation Estimators , 1965 .

[27]  G. Judge,et al.  Inequality Restrictions in Regression Analysis , 1966 .

[28]  H. Theil,et al.  A Quadratic Programming Approach to the Estimation of Transition Probabilities , 1966 .

[29]  William Mendenhall,et al.  Introduction to Probability and Statistics , 1961, The Mathematical Gazette.

[30]  J. J. Martin Bayesian Decision Problems and Markov Chains , 1967 .

[31]  G. Judge,et al.  A Sampling Study of the Properties of Estimators of Transition Probabilities , 1969 .