IDCS J1426.5+3508: SUNYAEV–ZEL’DOVICH MEASUREMENT OF A MASSIVE INFRARED-SELECTED CLUSTER AT z = 1.75

We report 31 GHz CARMA observations of IDCS J1426.5+3508, an infrared-selected galaxy cluster at z = 1.75. A Sunyaev-Zel'dovich (SZ) decrement is detected toward this cluster, indicating a total mass of M{sub 200,m} = (4.3 {+-} 1.1) Multiplication-Sign 10{sup 14} M{sub Sun} in agreement with the approximate X-ray mass of {approx}5 Multiplication-Sign 10{sup 14} M{sub Sun }. IDCS J1426.5+3508 is by far the most distant cluster yet detected via the SZ effect, and the most massive z {>=} 1.4 galaxy cluster found to date. Despite the mere {approx}1% probability of finding it in the 8.82 deg{sup 2} IRAC Distant Cluster Survey, IDCS J1426.5+3508 is not completely unexpected in {Lambda}CDM once the area of large, existing surveys is considered. IDCS J1426.5+3508 is, however, among the rarest, most extreme clusters ever discovered and indeed is an evolutionary precursor to the most massive known clusters at all redshifts. We discuss how imminent, highly sensitive SZ experiments will complement infrared techniques for statistical studies of the formation of the most massive galaxy clusters in the z > 1.5 universe, including potential precursors to IDCS J1426.5+3508.

[1]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[2]  S. Andreon,et al.  GALAXY CLUSTERS AT z ⩾ 1: GAS CONSTRAINTS FROM THE SUNYAEV–ZEL'DOVICH ARRAY , 2010, 1007.2853.

[3]  L. Verde,et al.  Implications of multiple high-redshift galaxy clusters , 2010, 1009.3884.

[4]  Concentrations of Dark Halos from Their Assembly Histories , 2001, astro-ph/0108151.

[5]  A. Schwope,et al.  Discovery of an X-ray-Luminous Galaxy Cluster at z=1.4 , 2005 .

[6]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102−4915 “EL GORDO,” A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 , 2011, 1109.0953.

[7]  J. Mohr,et al.  The x-ray luminous galaxy cluster population at 0.9 < z ≲ 1.6 as revealed by the XMM-Newton Distant Cluster Project , 2011, 1111.0009.

[8]  M. Halpern,et al.  THE ATACAMA COSMOLOGY TELESCOPE: SUNYAEV–ZEL'DOVICH-SELECTED GALAXY CLUSTERS AT 148 GHz IN THE 2008 SURVEY , 2010, 1010.1065.

[9]  L. Moustakas,et al.  THE COSMIC EVOLUTION OF ACTIVE GALACTIC NUCLEI IN GALAXY CLUSTERS , 2009, 0901.1109.

[10]  E. L. Wright,et al.  Clusters of Galaxies in the First Half of the Universe from the IRAC Shallow Survey , 2008, 0804.4798.

[11]  M. Nonino,et al.  Multi-wavelength study of XMMU J2235.3-2557: the most massive galaxy cluster at z > 1 , 2009, 0910.1716.

[12]  D. Huterer,et al.  Simultaneous falsification of Λ CDM and quintessence with massive, distant clusters , 2010, 1011.0004.

[13]  E. L. Wright,et al.  The Infrared Array Camera (IRAC) Shallow Survey , 2004 .

[14]  Amber D. Miller,et al.  LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION , 2011, 1107.5115.

[15]  John E. Carlstrom,et al.  Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel'dovich Array , 2007 .

[16]  P. A. R. Ade,et al.  X-RAY PROPERTIES OF THE FIRST SUNYAEV–ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE , 2010, 1006.3068.

[17]  M. Brodwin,et al.  An IR-selected Galaxy Cluster at z = 1.41 , 2005, astro-ph/0510655.

[18]  P. A. R. Ade,et al.  A SUNYAEV–ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg2 SOUTH POLE TELESCOPE SURVEY , 2011, 1101.1290.

[19]  G. W. Pratt,et al.  Planck early results Special feature Planck early results . VIII . The all-sky early Sunyaev-Zeldovich cluster sample , 2011 .

[20]  M. Brodwin,et al.  IDCS J1426.5+3508: DISCOVERY OF A MASSIVE, INFRARED-SELECTED GALAXY CLUSTER AT z = 1.75 , 2012, 1205.3786.

[21]  D. Muhleman,et al.  Mars: VLA observations of the Northern Hemisphere and the north polar region at wavelengths of 2 and 6 cm , 1987 .

[22]  P. A. R. Ade,et al.  GALAXY CLUSTERS SELECTED WITH THE SUNYAEV–ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS , 2010, 1003.0005.

[23]  J. Silk,et al.  Probability of the most massive cluster under non-Gaussian initial conditions , 2010, 1006.1950.

[24]  L. Moustakas,et al.  X-RAY EMISSION FROM TWO INFRARED-SELECTED GALAXY CLUSTERS AT z > 1.4 IN THE IRAC SHALLOW CLUSTER SURVEY , 2010, 1012.0581.

[25]  C. Gordon,et al.  The Extreme Tail of the Non-Gaussian Mass Function , 2011, 1104.1145.

[26]  A. Hornstrup,et al.  CHANDRA CLUSTER COSMOLOGY PROJECT. II. SAMPLES AND X-RAY DATA REDUCTION , 2008, 0805.2207.

[27]  Chandra observations of RX J1347.5−1145: the distribution of mass in the most X-ray-luminous galaxy cluster known , 2001, astro-ph/0111368.

[28]  David W. Harris,et al.  SCALING RELATIONS AND OVERABUNDANCE OF MASSIVE CLUSTERS AT z ≳ 1 FROM WEAK-LENSING STUDIES WITH THE HUBBLE SPACE TELESCOPE , 2011, 1105.3186.

[29]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[30]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[31]  S. Hotchkiss Quantifying the rareness of extreme galaxy clusters , 2011, 1105.3630.

[32]  S. Stanford,et al.  The Evolution of Dusty Star Formation and Stellar Mass Assembly in Clusters: Results from the IRAC 3.6, 4.5, 5.8, and 8.0 μm Cluster Luminosity Functions , 2008, 0807.0227.

[33]  H. Hoekstra,et al.  Large-scale structure and dynamics of the most X-ray luminous galaxy cluster known - RX J1347-1145 , 2009, 0912.2356.

[34]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[35]  M. Gladders,et al.  CONSTRAINING THE REDSHIFT EVOLUTION OF FIRST RADIO SOURCES IN RCS1 GALAXY CLUSTERS , 2010, 1010.6011.

[36]  O. University,et al.  XBootes: An X-Ray Survey of the NDWFS Bootes Field. I. Overview and Initial Results , 2005, astro-ph/0504084.

[37]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[38]  D. Holz,et al.  THE MOST MASSIVE OBJECTS IN THE UNIVERSE , 2010, 1004.5349.

[39]  CEA-Saclay,et al.  Discovery of a massive X-ray luminous galaxy cluster at z = 1.579 , 2011, 1105.5877.

[40]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[41]  S. N. Raines,et al.  The FLAMINGOS Extragalactic Survey , 2005, astro-ph/0511249.

[42]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[43]  B. T. Soifer,et al.  Photometric Redshifts in the IRAC Shallow Survey , 2006 .

[44]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: PHYSICAL PROPERTIES AND PURITY OF A GALAXY CLUSTER SAMPLE SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT , 2010, The Astrophysical Journal.

[45]  August E. Evrard,et al.  Cosmological Parameters from Observations of Galaxy Clusters , 2011, 1103.4829.

[46]  Adrian T. Lee,et al.  The 10 Meter South Pole Telescope , 2009, 0907.4445.

[47]  Harvard,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[48]  C. Fedeli,et al.  IDCS J1426.5+3508: COSMOLOGICAL IMPLICATIONS OF A MASSIVE, STRONG LENSING CLUSTER AT z = 1.75 , 2012, 1205.3788.

[49]  E. L. Wright,et al.  THE SPITZER DEEP, WIDE-FIELD SURVEY , 2009, 0906.0024.

[50]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[51]  Adrian T. Lee,et al.  An Overview of the SPTpol Experiment , 2012 .

[52]  M. Trodden,et al.  Symmetries for Galileons and DBI scalars on curved space , 2011, 1103.5745.

[53]  Adrian T. Lee,et al.  DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1 , 2011, 1101.1286.

[54]  P. A. R. Ade,et al.  SPT-CL J0546-5345: A MASSIVE z>1 GALAXY CLUSTER SELECTED VIA THE SUNYAEV–ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE , 2010, 1006.5639.