Dirichlet Energy for Analysis and Synthesis of Soft Maps

Soft maps taking points on one surface to probability distributions on another are attractive for representing surface mappings in the presence of symmetry, ambiguity, and combinatorial complexity. Few techniques, however, are available to measure their continuity and other properties. To this end, we introduce a novel Dirichlet energy for soft maps generalizing the classical map Dirichlet energy, which measures distortion by computing how soft maps transport probabilistic mass from one distribution to another. We formulate the computation of the Dirichlet energy in terms of a differential equation and provide a finite elements discretization that enables all of the quantities introduced to be computed. We demonstrate the effectiveness of our framework for understanding soft maps arising from various sources. Furthermore, we suggest how these energies can be applied to generate continuous soft or point‐to‐point maps.

[1]  Sören Bartels,et al.  Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces , 2009, Math. Comput..

[2]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[3]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[4]  C. Villani Topics in Optimal Transportation , 2003 .

[5]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[6]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[7]  Peter Schröder,et al.  A simple geometric model for elastic deformations , 2010, ACM Trans. Graph..

[8]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[9]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[10]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[11]  Haibin Ling,et al.  Diffusion Distance for Histogram Comparison , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[12]  Leonidas J. Guibas,et al.  On Discrete Killing Vector Fields and Patterns on Surfaces , 2010, Comput. Graph. Forum.

[13]  T. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, SIGGRAPH 2009.

[14]  Leonidas J. Guibas,et al.  An optimization approach for extracting and encoding consistent maps in a shape collection , 2012, ACM Trans. Graph..

[15]  Shing-Tung Yau,et al.  Computing Conformal Structure of Surfaces , 2002, Commun. Inf. Syst..

[16]  Hanqing Lu,et al.  Topology-Preserved Diffusion Distance for Histogram Comparison , 2007, BMVC.

[17]  Pierre Alliez,et al.  An Optimal Transport Approach to Robust Reconstruction and Simplification of 2d Shapes , 2022 .

[18]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[19]  Stephen DiVerdi,et al.  Exploring collections of 3D models using fuzzy correspondences , 2012, ACM Trans. Graph..

[20]  Facundo Mémoli,et al.  Gromov–Wasserstein Distances and the Metric Approach to Object Matching , 2011, Found. Comput. Math..

[21]  Venkat Chandrasekaran,et al.  Recovery of Sparse Probability Measures via Convex Programming , 2012, NIPS.

[22]  Leonidas J. Guibas,et al.  Soft Maps Between Surfaces , 2012, Comput. Graph. Forum.

[23]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[24]  Frédéric Hélein,et al.  Harmonic maps: Dedicated to the memory of James Eells , 2008 .

[25]  Daniel Cohen-Or,et al.  Deformation‐Driven Shape Correspondence , 2008, Comput. Graph. Forum.

[26]  Daniel Cremers,et al.  Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching , 2011, Comput. Graph. Forum.

[27]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[28]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[29]  Jürgen Jost,et al.  Equilibrium maps between metric spaces , 1994 .

[30]  Tony DeRose,et al.  Multiresolution analysis of arbitrary meshes , 1995, SIGGRAPH.

[31]  Craig Gotsman,et al.  Variational harmonic maps for space deformation , 2009, ACM Trans. Graph..

[32]  Mark Meyer,et al.  Intrinsic Parameterizations of Surface Meshes , 2002, Comput. Graph. Forum.

[33]  D. Lucas,et al.  Probabilistic tracking in a multitarget environment , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[34]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..

[35]  Yaron Lipman,et al.  Conformal Wasserstein distance: II. computational aspects and extensions , 2013, Math. Comput..

[36]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[37]  Yann Brenier,et al.  A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.

[38]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[39]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, SIGGRAPH 2011.

[40]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.