A graphical approach to computing loop gain margins for TITO systems

An effective method is presented to compute the loop gain margins exactly for two-input–two-output processes. The stable regions in parameter space are first obtained by determining the stability boundaries and the loop gain margins found within the stable regions. Examples are provided for illustration and comparison with other methods.

[1]  P. J. Campo,et al.  Achievable closed-loop properties of systems under decentralized control: conditions involving the steady-state gain , 1994, IEEE Trans. Autom. Control..

[2]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[3]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[4]  Allen R. Tannenbaum On the multivariable gain margin problem , 1986, Autom..

[5]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[6]  Ezra Zeheb,et al.  All constant gain stabilizing controllers for an interval delay system with uncertain parameters , 1997, Autom..

[7]  Tong Heng Lee,et al.  Graphical methods for computation of stabilizing gain ranges for TITO systems , 2011, 2011 9th IEEE International Conference on Control and Automation (ICCA).

[8]  V. Blondel,et al.  An upper bound for the gain of stabilizing proportional controllers , 1995 .

[9]  Min Wu,et al.  Exact computation of loop gain margins of multivariable feedback systems , 2010 .

[10]  M. Safonov Stability margins of diagonally perturbed multivariable feedback systems , 1982 .

[11]  Dragoslav D. Šiljak,et al.  Nonlinear systems;: The parameter analysis and design , 1968 .

[12]  Qing-Guo Wang,et al.  A novel computational method for loop gain and phase margins of TITO systems , 2013, Journal of the Franklin Institute.

[13]  Chang-Chieh Hang,et al.  A quasi-LMI approach to computing stabilizing parameter ranges of multi-loop PID controllers , 2007 .