Radar odometry with recursive-RANSAC

This paper explores the use of radar odometry for Global Positioning System-denied navigation. The range progression from arbitrary ground-based point scatterers is used to estimate an unmanned aerial vehicle's relative motion. In high clutter environments, the recursive-RANSAC algorithm provides robust and efficient feature identification, data association, and tracking. The tracked feature range measurements are integrated with inertial measurement unit measurements in an extended Kalman filter. Real flight data from a cluttered environment are used to validate the results.

[1]  R. Mahler A Theoretical Foundation for the Stein-Winter "Probability Hypothesis Density (PHD)" Multitarget Tracking Approach , 2000 .

[2]  Yu Morton,et al.  Experimental Study of UWB-OFDM SAR for Indoor Navigation with INS Integration , 2012 .

[3]  Yu Morton,et al.  Simulation Study of UWB-OFDM SAR for Dead-Reckoning Navigation , 2010 .

[4]  Cecilia Laschi,et al.  Bio-inspired sensory-motor coordination , 2008, Auton. Robots.

[5]  Y. Bar-Shalom,et al.  Tracking in a cluttered environment with probabilistic data association , 1975, Autom..

[6]  J. Wendel,et al.  Direct Kalman Filtering of GPS / INS for Aerospace Applications , 2001 .

[7]  Kyle Kauffman,et al.  Enhanced feature detection and tracking algorithm for UWB-OFDM SAR navigation , 2011, Proceedings of the 2011 IEEE National Aerospace and Electronics Conference (NAECON).

[8]  Jan Willem Marck,et al.  Indoor radar SLAM A radar application for vision and GPS denied environments , 2013, 2013 European Radar Conference.

[9]  Maarten Uijt de Haag,et al.  Application of laser range scanner based terrain referenced navigation systems for aircraft guidance , 2006, Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA'06).

[10]  Yu T. Morton,et al.  Real-Time UWB-OFDM Radar-Based Navigation in Unknown Terrain , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[11]  Mischa Schwartz,et al.  A coincidence procedure for signal detection , 1956, IRE Trans. Inf. Theory.

[12]  Anna Freud,et al.  Design And Analysis Of Modern Tracking Systems , 2016 .

[13]  Randal W. Beard,et al.  Characterizing range progression of SAR point scatterers with recursive RANSAC , 2014, 2014 IEEE Radar Conference.

[14]  Dirk Langer,et al.  An integrated MMW radar system for outdoor navigation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[15]  David G. Long,et al.  The BYU SAR: A Small, Student-Built SAR for UAV Operation , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[16]  Aníbal Ollero,et al.  Vision-Based Odometry and SLAM for Medium and High Altitude Flying UAVs , 2009, J. Intell. Robotic Syst..

[17]  Thierry Toutin,et al.  Comparison of stereo-extracted DTM from different high-resolution sensors: SPOT-5, EROS-a, IKONOS-II, and QuickBird , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Ove Kent Hagen,et al.  Low altitude AUV terrain navigation using an interferometric sidescan sonar , 2011, OCEANS'11 MTS/IEEE KONA.

[19]  Peter C. Niedfeldt Recursive-RANSAC: A Novel Algorithm for Tracking Multiple Targets in Clutter , 2014 .

[20]  Kurt Konolige,et al.  Large-Scale Visual Odometry for Rough Terrain , 2007, ISRR.

[21]  Kyle Kauffman,et al.  Fast Target Tracking Technique for Synthetic Aperture Radars , 2009 .

[22]  M.U. de Haag,et al.  Improved downward-looking terrain database integrity monitor and terrain navigation , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[23]  F. Gustafsson,et al.  Marginalized Particle Filter for Accurate and Reliable Terrain-Aided Navigation , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[24]  S. Sukkarieh,et al.  Autonomous airborne navigation in unknown terrain environments , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[25]  Kyle J. Kauffman,et al.  Radar Based Navigation in Unknown Terrain , 2012 .

[26]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[27]  Jonathan Schuerger,et al.  Wideband OFDM system for radar and communications , 2009, 2009 IEEE Radar Conference.

[28]  Hugh F. Durrant-Whyte,et al.  The design of a radar-based navigation system for large outdoor vehicles , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[29]  A. J. Henley,et al.  Terrain aided navigation: current status, techniques for flat terrain and reference data requirements , 1990, IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences.

[30]  Jonghyuk Kim,et al.  Recasting SLAM - Towards Improving Efficiency and Platform Independency , 2003, ISRR.

[31]  Martin David Adams,et al.  An augmented state SLAM formulation for multiple line-of-sight features with millimetre wave RADAR , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Yaakov Bar-Shalom,et al.  Tracking with debiased consistent converted measurements versus EKF , 1993 .

[33]  Timothy W. McLain,et al.  Small Unmanned Aircraft: Theory and Practice , 2012 .

[34]  R. Mahler Multitarget Bayes filtering via first-order multitarget moments , 2003 .

[35]  Yu Morton,et al.  Simulation Study of UWB-OFDM SAR for Navigation Using an Extended Kalman Filter , 2010 .

[36]  Peter C. Niedfeldt,et al.  Recursive RANSAC: Multiple Signal Estimation with Outliers , 2013 .

[37]  Randal W. Beard,et al.  Radar Odometry on Small Unmanned Aircraft , 2013 .

[38]  Joel F. Walker,et al.  Performance Data for a Double-Threshold Detection Radar , 1971, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Alan Schneider,et al.  Observability of Relative Navigation Using Range-Only Measurements , 1985, IEEE Transactions on Aerospace and Electronic Systems.

[40]  L. B. Hostetler,et al.  Nonlinear Kalman filtering techniques for terrain-aided navigation , 1983 .

[41]  Randal W. Beard,et al.  Radar odometry on fixed-wing small unmanned aircraft , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[42]  David Nistér,et al.  An efficient solution to the five-point relative pose problem , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[43]  Dmitriy Garmatyuk,et al.  Efficient sparse target tracking algorithm for navigation with UWB-OFDM radar sensors , 2009, Proceedings of the IEEE 2009 National Aerospace & Electronics Conference (NAECON).

[44]  T. Kurien,et al.  Optimal Maneuver Detection and Estimation in Multiobject Tracking , 1983 .

[45]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[46]  Gamini Dissanayake,et al.  A new state vector for range-only SLAM , 2011, 2011 Chinese Control and Decision Conference (CCDC).

[47]  Y. Bar-Shalom Tracking and data association , 1988 .

[48]  David Schneider Radio eye in the sky , 2009, IEEE Spectrum.

[49]  Vincent Lepetit,et al.  View-based Maps , 2010, Int. J. Robotics Res..

[50]  D. B. MARCO,et al.  Local area navigation using sonar feature extraction and model-based predictive control , 1998, Int. J. Syst. Sci..

[51]  Tobias Deissler,et al.  Feature based indoor mapping using a bat-type UWB radar , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[52]  Yaakov Bar-Shalom,et al.  Multi-target tracking using joint probabilistic data association , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[53]  F. Fraundorfer,et al.  Visual Odometry : Part II: Matching, Robustness, Optimization, and Applications , 2012, IEEE Robotics & Automation Magazine.

[54]  Friedrich Fraundorfer,et al.  Visual Odometry Part I: The First 30 Years and Fundamentals , 2022 .

[55]  David G. Long,et al.  Initial results of a low-cost SAR: YINSAR , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[56]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[57]  John B. Moore,et al.  Direct Kalman filtering approach for GPS/INS integration , 2002 .

[58]  M.U. de Haag,et al.  Flight test results of loose integration of dual airborne laser scanners (DALS)/INS , 2008, 2008 IEEE/ION Position, Location and Navigation Symposium.

[59]  R. Stahn,et al.  Laser Scanner-Based Navigation for Commercial Vehicles , 2007, 2007 IEEE Intelligent Vehicles Symposium.

[60]  John J. Leonard,et al.  Pure range-only sub-sea SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[61]  F. Lewis Optimal Estimation: With an Introduction to Stochastic Control Theory , 1986 .

[62]  Antoni Grau,et al.  A Practical Method for Implementing an Attitude and Heading Reference System , 2014 .