Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

[1]  Frenkel,et al.  Nonperiodic solid phase in a two-dimensional hard-dimer system. , 1991, Physical review letters.

[2]  Pseudorandom number generators based on the Weyl sequence , 1999 .

[3]  K. Wojciechowski,et al.  Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers , 1987 .

[4]  K. Evans Auxetic polymers: a new range of materials , 1991 .

[5]  Taylor,et al.  Theory of ordered phases in a system of parallel hard spherocylinders. , 1989, Physical review letters.

[6]  K. Wojciechowski,et al.  Orientational phase transition between hexagonal solids in planar systems of hard cyclic pentamers and heptamers , 2002 .

[7]  P. Pierański,et al.  A hard disc system ; solid-solid phase transition in a thin layer , 1980 .

[8]  K. Wojciechowski Entropy driven demixing: why? , 1996 .

[9]  Whitlock,et al.  Pseudorandom number generator for massively parallel molecular-dynamics simulations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[10]  C. Vega,et al.  Solid–fluid equilibria for hard dumbbells via Monte Carlo simulation , 1992 .

[11]  Zicong Zhou,et al.  Fluctuations and thermodynamics properties of the constant shear strain ensemble , 2001 .

[12]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[13]  William G. Hoover,et al.  Exact Dynamical Basis for a Fluctuating Cell Model , 1972 .

[14]  Rao,et al.  Elastic constants from microscopic strain fluctuations , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Computer simulation of the phase behavior of a model membrane protein: Annexin V , 2002 .

[16]  J. B. Park,et al.  Negative Poisson's ratio polymeric and metallic foams , 1988 .

[17]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[18]  H. Löwen,et al.  PHASE DIAGRAM OF HARD SPHERES CONFINED BETWEEN TWO PARALLEL PLATES , 1997 .

[19]  R. Impey,et al.  Second-order elastic constants for the Lennard-Jones solid , 1984 .

[20]  K. Wojciechowski,et al.  Monte Carlo simulation of hard cyclic pentamers in two dimensions. Equation of state and structural properties , 1991 .

[21]  H. Löwen,et al.  Phase behavior and structure of star-polymer-colloid mixtures , 2002 .

[22]  Daan Frenkel,et al.  The hard ellipsoid-of-revolution fluid I. Monte Carlo simulations , 1985 .

[23]  P. A. Monson,et al.  The high density equation of state and solid-fluid equilibrium in systems of freely jointed chains of tangent hard spheres , 1997 .

[24]  Sengupta,et al.  Elastic moduli, dislocation core energy, and melting of hard disks in two dimensions , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  M. Parrinello,et al.  Crystal structure and pair potentials: A molecular-dynamics study , 1980 .

[26]  William G. Hoover,et al.  Cooperative Motion of Hard Disks Leading to Melting , 1963 .

[27]  DETERMINATION OF ELASTIC CONSTANTS BY MONTE CARLO SIMULATIONS , 1996 .

[28]  A. Griffin,et al.  Toward Negative Poisson Ratio Polymers Through Molecular Design , 1998 .

[29]  Ray,et al.  Third-order elastic constants from molecular dynamics: Theory and an example calculation. , 1988, Physical review. B, Condensed matter.

[30]  Gaoyuan Wei Negative and conventional Poisson’s ratios of polymeric networks with special microstructures , 1992 .

[31]  Frank H. Stillinger,et al.  Systematic Approach to Explanation of the Rigid Disk Phase Transition , 1964 .

[32]  Fluctuation formalism for elastic constants in hard-spheres-and-tethers systems , 2000 .

[33]  B. Alder,et al.  Phase Transition in Elastic Disks , 1962 .

[34]  G. T. Evans Hard body model for chiral nematic liquid crystals , 1992 .

[35]  D. Frenkel,et al.  Phase behavior of disklike hard-core mesogens. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[36]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[37]  M. Wertheim,et al.  Thermodynamic perturbation theory of polymerization , 1987 .

[38]  Richard J. Bathurst,et al.  Note on a random isotropic granular material with negative poisson's ratio , 1988 .

[39]  P. Pierański,et al.  A hard-disc system, an experimental model , 1978 .

[40]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[41]  Jacques Vieillard‐Baron,et al.  Phase Transitions of the Classical Hard‐Ellipse System , 1972 .

[42]  Ladd,et al.  Elastic constants of hard-sphere crystals. , 1987, Physical review letters.

[43]  Ray,et al.  Molecular dynamics calculation of elastic constants for a crystalline system in equilibrium. , 1985, Physical review. B, Condensed matter.

[44]  T. Boublı́k Equation of state of linear fused hard-sphere models , 1989 .

[45]  Elastic constants of the hard-sphere glass: a density functional approach , 1990 .

[46]  Wojciechowski,et al.  Monte Carlo simulations of highly anisotropic two-dimensional hard dumbbell-shaped molecules: Nonperiodic phase between fluid and dense solid. , 1992, Physical review. B, Condensed matter.

[47]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[48]  K. Wojciechowski Hard star‐shaped bodies and Monte Carlo simulations , 1991 .

[49]  F. Stillinger,et al.  Elasticity in Rigid‐Disk and ‐Sphere Crystals , 1967 .

[50]  S. Hirotsu,et al.  Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels , 1991 .

[51]  Kenneth E. Evans,et al.  Tensile network microstructures exhibiting negative Poisson's ratios , 1989 .

[52]  Seifert,et al.  Negative Poisson ratio in two-dimensional networks under tension. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[53]  Xu,et al.  Elastic constants of the hard-sphere solid from density-functional theory. , 1988, Physical review. A, General physics.

[54]  Stroobants,et al.  Evidence for smectic order in a fluid of hard parallel spherocylinders. , 1986, Physical review letters.

[55]  K. Wojciechowski Elastic constants of the hard disk system in the self-consistent free volume approximation , 1991 .

[56]  K. Wojciechowski,et al.  Monte Carlo simulations of hard cyclic pentamers in two dimensions : translational-rotational coupling in the orientationally disordered phase , 1993 .

[57]  S. Nosé,et al.  Constant pressure molecular dynamics for molecular systems , 1983 .

[58]  Daan Frenkel,et al.  New Monte Carlo method to compute the free energy of arbitrary solids. Application to the fcc and hcp phases of hard spheres , 1984 .

[59]  R. Lakes,et al.  Hysteresis Behaviour and Specific Damping Capacity of Negative Poisson's Ratio Foams , 1996, Cellular Polymers.

[60]  Universal negative poisson ratio of self-avoiding fixed-connectivity membranes. , 2001, Physical review letters.

[61]  Baughman,et al.  Negative Poisson's ratios for extreme states of matter , 2000, Science.

[62]  B. Laird Weighted‐density‐functional theory calculation of elastic constants for face‐centered‐cubic and body‐centered‐cubic hard‐sphere crystals , 1992 .

[63]  Runge,et al.  Monte Carlo determination of the elastic constants of the hard-sphere solid. , 1987, Physical review. A, General physics.

[64]  P. Pierański,et al.  Rotatory phase in a system of hard cyclic hexamers; an experimental modelling study† , 1982 .

[65]  Charles H. Bennett,et al.  Serially Deposited Amorphous Aggregates of Hard Spheres , 1972 .

[66]  William G. Hoover,et al.  Exact hard‐disk free volumes , 1979 .

[67]  B. Mulder,et al.  Phase diagram of Onsager crosses , 1998 .

[68]  A. Bonissent,et al.  Solid-solid phase transitions in a low-dimensionality system , 1984 .

[69]  S. Hirotsu,et al.  Elastic anomaly near the critical point of volume phase transition in polymer gels , 1990 .

[70]  R. Bathurst,et al.  Microstructure of isotropic materials with negative Poisson's ratio , 1991, Nature.

[71]  K. Wojciechowski Solid phases of two-dimensional hard dumb-bells in the free volume approximation: Crystal-aperiodic-solid phase transition , 1987 .

[72]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[73]  R. Lakes,et al.  Properties of a chiral honeycomb with a poisson's ratio of — 1 , 1997 .

[74]  Michael C. Moody,et al.  Calculation of elastic constants using isothermal molecular dynamics. , 1986, Physical review. B, Condensed matter.

[75]  P. Teixeira,et al.  Biaxial Nematic Order in the Hard-boomerang Fluid , 1998 .

[76]  R. Bathurst,et al.  Computer simulation of assemblies of rigid elastic elliptic particles , 1996 .

[77]  Roderic S. Lakes,et al.  Scale-up of transformation of negative Poisson's ratio foam : Slabs , 1997 .

[78]  K. Wojciechowski,et al.  Elastic moduli of a perfect hard disc crystal in two dimensions , 1989 .

[79]  P. Pierański,et al.  A hard‐disk system in a narrow box. I. Thermodynamic properties , 1982 .

[80]  Y. Ishibashi,et al.  Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom , 2002 .

[81]  Mohanty,et al.  "Martensitic" instability of an icosahedral quasicrystal. , 1987, Physical review letters.

[82]  K. Wojciechowski,et al.  Orientational phase transition in a two-dimensional system of hard cyclic hexamers; Free volume approximation☆ , 1984 .

[83]  Kenneth E. Evans,et al.  Modelling negative poisson ratio effects in network-embedded composites , 1992 .

[84]  R. Lakes Advances in negative Poisson's ratio materials , 1993 .

[85]  Wojciechowski,et al.  Negative Poisson ratio in a two-dimensional "isotropic" solid. , 1989, Physical review. A, General physics.

[86]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[87]  J. D. Bernal,et al.  The Bakerian Lecture, 1962 The structure of liquids , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[88]  G. Milton Composite materials with poisson's ratios close to — 1 , 1992 .

[89]  A. Beltzer,et al.  Reexamination of dynamic problems of elasticity for negative Poisson’s ratio , 1988 .

[90]  Georgios E. Stavroulakis,et al.  Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach , 1997 .

[91]  R. Lakes,et al.  Negative Poisson's ratio polyethylene foams , 2001 .

[92]  K. Wojciechowski,et al.  Rotational phase transitions and melting in a 2D system of hard cyclic pentamers , 1984 .

[93]  V. V. Novikov,et al.  Negative Poisson coefficient of fractal structures , 1999 .

[94]  P. Pierański,et al.  An instability in a hard-disc system in a narrow box (Helmholtz free energy) , 1983 .

[95]  K W Wojciechowski,et al.  Efficient Monte Carlo simulations using a shuffled nested Weyl sequence random number generator. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[96]  W. G. Hoover,et al.  Isothermal elastic constants for argon. theory and Monte Carlo calculations , 1969 .

[97]  K. Wojciechowski,et al.  ELASTIC CONSTANTS OF DENSE CRYSTALLINE PHASES OF TWO-DIMENSIONAL HARD CYCLIC HEPTAMERS , 2000 .

[98]  Katherine J. Strandburg,et al.  Two-dimensional melting , 1988 .

[99]  C. Vega,et al.  Fluid solid equilibrium for two dimensional tangent hard disk chains from Wertheim’s perturbation theory , 2002 .

[100]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[101]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[102]  Sam F. Edwards,et al.  Poisson ratio in composites of auxetics , 1998 .

[103]  C. Vega,et al.  Extending Wertheim's perturbation theory to the solid phase: The freezing of the pearl-necklace model , 2001 .

[104]  John R. Ray,et al.  Statistical ensembles and molecular dynamics studies of anisotropic solids , 1984 .

[105]  D. Frenkel,et al.  Monte Carlo simulations of a two-dimensional hard dimer system , 1992 .

[106]  M. Parrinello,et al.  Monte Carlo study of the phase diagram of a two dimensional system of hard cyclic hexamers , 1984 .