Blood p50 evaluation enhances diagnostic definition of isolated erythrocytosis

Background.  High oxygen‐affinity haemoglobin variants and 2,3‐diphosphoglycerate (2,3‐DPG) deficiency are inherited diseases generating low tissue oxygen tension and erythropoietin‐driven erythrocytosis, that characterizes the clinical phenotype of patients. Level of blood p50 (the oxygen tension at which haemoglobin is 50% saturated) is used to recognize these conditions.

[1]  M. Cazzola,et al.  Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. , 2008, Blood.

[2]  M. Cazzola,et al.  Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  N. Agarwal,et al.  Familial Polycythemia Caused by a Novel Mutation in the Beta Globin Gene: Essential Role of P50 in Evaluation of Familial Polycythemia , 2007, International journal of medical sciences.

[4]  M. McMullin,et al.  A novel erythrocytosis-associated PHD2 mutation suggests the location of a HIF binding groove. , 2007, Blood.

[5]  C. Bloomfield,et al.  Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. , 2007, Blood.

[6]  M. Stratton,et al.  JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. , 2007, The New England journal of medicine.

[7]  Webb Miller,et al.  HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update , 2007, Human mutation.

[8]  P. Pucci,et al.  Hb J-CAPE TOWN [α92(FG4)Arg→Gln (α1), CGG→CAG] in Southern Italy Found in a Patient with Erythrocytosis , 2007 .

[9]  Ferdane Kutlar,et al.  Diagnostic Approach to Hemoglobinopathies , 2007, Hemoglobin.

[10]  M. Cazzola,et al.  JAK2 (V617F) as an acquired somatic mutation and a secondary genetic event associated with disease progression in familial myeloproliferative disorders , 2006, Cancer.

[11]  Alain J Marengo-Rowe,et al.  Structure-Function Relations of Human Hemoglobins , 2006, Proceedings.

[12]  M. Cazzola,et al.  Relation between JAK2 (V617F) mutation status, granulocyte activation, and constitutive mobilization of CD34+ cells into peripheral blood in myeloproliferative disorders. , 2006, Blood.

[13]  V. Jooste,et al.  Incidence of chronic Philadelphia chromosome negative (Ph−) myeloproliferative disorders in the Côte d'Or area, France, during 1980–99 , 2005, Journal of internal medicine.

[14]  Mario Cazzola,et al.  A gain-of-function mutation of JAK2 in myeloproliferative disorders. , 2005, The New England journal of medicine.

[15]  H. Wajcman,et al.  Hemoglobins With High Oxygen Affinity Leading to Erythrocytosis. New Variants and New Concepts , 2005, Hemoglobin.

[16]  W. Schröter Kongenitale nichtsphärocytäre hämolytische Anämie bei 2,3-Diphosphoglyceratmutase-Mangel der Erythrocyten im frühen Säuglingsalter , 1965, Klinische Wochenschrift.

[17]  D. Stockton,et al.  Congenital polycythemias/erythrocytoses. , 2005, Haematologica.

[18]  M. Cazzola,et al.  Life expectancy and prognostic factors for survival in patients with polycythemia vera and essential thrombocythemia. , 2004, The American journal of medicine.

[19]  P. Johansson,et al.  Trends in the incidence of chronic Philadelphia chromosome negative (Ph‐) myeloproliferative disorders in the city of Göteborg, Sweden, during 1983–99 , 2004, Journal of internal medicine.

[20]  J. Hoyer,et al.  Erythrocytosis due to bisphosphoglycerate mutase deficiency with concurrent glucose‐6‐phosphate dehydrogenase (G‐6‐PD) deficiency , 2004, American journal of hematology.

[21]  A. Salzano,et al.  Hb Cardarelli [β86(F2)Ala→Pro]: A New Unstable and Hyperaffine Variant in Association with β+‐Thalassemia , 2004 .

[22]  A. Salzano,et al.  Hb Cardarelli [beta86(F2)Ala-->Pro]: a new unstable and hyperaffine variant in association with beta(+)-thalassemia. , 2004, Hemoglobin.

[23]  A. Tosetto,et al.  The Rate of Progression to Polycythemia Vera or Essential Thrombocythemia in Patients with Erythrocytosis or Thrombocytosis , 2003, Annals of Internal Medicine.

[24]  J. Spivak,et al.  Polycythemia vera: myths, mechanisms, and management. , 2002, Blood.

[25]  David Mole,et al.  Disruption of oxygen homeostasis underlies congenital Chuvash polycythemia , 2002, Nature Genetics.

[26]  G. Gerli,et al.  First case of hemoglobin San Diego in Italy , 2002, American journal of hematology.

[27]  H. Blacklock,et al.  Idiopathic erythrocytosis – a declining entity , 2001, British journal of haematology.

[28]  A. Tefferi,et al.  A clinical update in polycythemia vera and essential thrombocythemia. , 2000, The American journal of medicine.

[29]  H. Kluin-Nelemans,et al.  Hb Malmö [β-97(FG-4)His→Gln] leading to polycythemia in a Dutch family , 1996, Annals of Hematology.

[30]  H. Kluin-Nelemans,et al.  Hb Malmö [beta-97(FG-4)His-->Gln] leading to polycythemia in a Dutch family. , 1996, Annals of hematology.

[31]  G. Modiano,et al.  Detection of alpha-globin gene disorders by a simple PCR methodology. , 1996, Haematologica.

[32]  G. Semenza,et al.  Primary familial polycythemia: a frameshift mutation in the erythropoietin receptor gene and increased sensitivity of erythroid progenitors to erythropoietin. , 1995, Blood.

[33]  V. Joulin,et al.  Compound heterozygosity in a complete erythrocyte bisphosphoglycerate mutase deficiency. , 1992, Blood.

[34]  A. Mosca,et al.  Double heterozygosity for hemoglobin Malmö [beta 97 (FG 4) His----Gln] and beta-thalassemia traits. , 1989, Haematologica.

[35]  L. Forman,et al.  Effect of oxalate and malonate on red cell metabolism. , 1987, Blood.

[36]  Y. Beuzard,et al.  Hereditary pyruvate kinase abnormalities associated with erythrocytosis , 1981, American journal of hematology.

[37]  W. Engel,et al.  The molecular mechanism of the inherited phosphofructokinase deficiency associated with hemolysis and myopathy. , 1980, Blood.

[38]  J. Marie,et al.  Pyruvate kinase hyperactivity genetically determined metabolic consequences and molecular characterization. , 1980, Blood.

[39]  Y. Beuzard,et al.  The first case of a complete deficiency of diphosphoglycerate mutase in human erythrocytes. , 1978, The Journal of clinical investigation.

[40]  J. Garvin,et al.  Study of a kindred with partial deficiency of red cell 2,3-diphosphoglycerate mutase (2,3-DPGM) and compensated hemolysis. , 1978, Blood.

[41]  G. Brittenham,et al.  Hemoglobin Hofu or αβ [126 (H4) Val → Glu] Found in Combination with Hemoglobin S , 1978 .

[42]  G. Brittenham,et al.  Hemoglobin Hofu or alpha 2 beta 2 [126 (H4) Va1 leads to Glu] found in combination with hemoglobin S. , 1978, Hemoglobin.

[43]  J. Adamson,et al.  Detection of mutant hemoglobins with altered affinity for oxygen. A simplified technique. , 1976, Annals of Internal Medicine.

[44]  G. Stamatoyannopoulos,et al.  Hemoglobinopathic erythrocytosis due to a new electrophoretically silent variant, hemoglobin San Diego (beta109 (G11)val--met). , 1974, The Journal of clinical investigation.

[45]  S. Boyer,et al.  Hemoglobin Malmö β-97 (FG-4) Histidine→Glutamine: A Cause of Polycythemia , 1972 .

[46]  H. Lehmann,et al.  Two new pathological haemoglobins: Olmsted beta 141 (H19) Leu leads to Arg and Malmö beta 97 (FG4) His leads to Gln. , 1970, The Biochemical journal.

[47]  W. Schröter [Congenital non-spherocytic hemolytic anemia by 2,3-diphosphoglycerate mutase deficiency of the erythrocytes in early infancy]. , 1965, Klinische Wochenschrift.