A recursive color image edge detection method using Green's function approach

Abstract In this paper, an extended version of image edge detector using Green's function approach is proposed for detection of edges in the color vector space field. In the proposed method, the relationship between the Red, Green and Blue components is considered to design a differential operator for detection of edges in color images. By using the proposed operator, partial derivatives of all components of color image can simultaneously affect on the edge detection process. Therefore the proposed method can preserve the vector nature of color images during the edge processing stages. Also, the proposed method is compared both quantitatively and qualitatively with other color edge detectors. Experimental results show that the proposed method can efficiently preserve the edges even when the color images corrupted with different levels of noise.

[1]  Chin-Chen Chang,et al.  Image Retrieval Using Spatial Color and Edge Detection , 2005, PCM.

[2]  G. Economou Detecting edges using density value , 2004 .

[3]  Shyi-Chyi Cheng,et al.  Fast algorithms for color image processing by principal component analysis , 2003, J. Vis. Commun. Image Represent..

[4]  Lucas J. van Vliet,et al.  A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..

[5]  Shyi-Chyi Cheng,et al.  Subpixel edge detection of color images by principal axis analysis and moment-preserving principle , 2005, Pattern Recognit..

[6]  Jing Zhang,et al.  Texture-Based Image Retrieval by Edge Detection Matching GLCM , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.

[7]  Patrick Lambert,et al.  Using Eigenvectors of a Vector Field for Deriving a Second Directional Derivative Operator for Color Images , 1993, CAIP.

[8]  Shantaram Vasikarla,et al.  Fuzzy Edge Detection in Biometric Systems , 2007, 36th Applied Imagery Pattern Recognition Workshop (aipr 2007).

[9]  Riries Rulaningtyas,et al.  Edge detection for brain tumor pattern recognition , 2009, International Conference on Instrumentation, Communication, Information Technology, and Biomedical Engineering 2009.

[10]  Michel Chapron,et al.  A color edge detector based on statistical rupture tests , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[11]  Robert M. Haralick,et al.  Morphologic edge detection , 1987, IEEE J. Robotics Autom..

[12]  Thomas S. Huang,et al.  Color image edge detection using cluster analysis , 1997, Proceedings of International Conference on Image Processing.

[13]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[14]  Akira Shiozaki,et al.  Edge extraction using entropy operator , 1986, Comput. Vis. Graph. Image Process..

[15]  Panos E. Trahanias,et al.  Color edge detection using vector order statistics , 1993, IEEE Trans. Image Process..

[16]  George Economou,et al.  Use of relative entropy in colour edge detection , 1999 .

[17]  M. Mukherjee,et al.  Object tracking using edge detection , 2010, ICWET.

[18]  Guner S. Robinson,et al.  Color Edge Detection , 1976, Optics & Photonics.

[19]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[20]  Carlo Tomasi,et al.  Edge, Junction, and Corner Detection Using Color Distributions , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Matti Pietikäinen,et al.  Edge Information in Color Images Based on Histograms of Differences , 1985 .

[22]  Panos E. Trahanias,et al.  Vector order statistics operators as color edge detectors , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[23]  Anastasios N. Venetsanopoulos,et al.  Color edge detectors based on multivariate ordering , 1992, Other Conferences.

[24]  Didier Zugaj,et al.  A new approach of color images segmentation based on fusing region and edge segmentations outputs , 1998, Pattern Recognit..

[25]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Wen-June Wang,et al.  A novel edge detection method based on the maximizing objective function , 2007, Pattern Recognit..

[27]  Reza P. R. Hasanzadeh,et al.  Vector-valued color image edge detection using Green function approach , 2010, 2010 6th Iranian Conference on Machine Vision and Image Processing.

[28]  Hsien-Che Lee,et al.  Detecting boundaries in a vector field , 1991, IEEE Trans. Signal Process..

[29]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[30]  Michel Chapron,et al.  A chromatic contour detector based on abrupt change techniques , 1997, Proceedings of International Conference on Image Processing.

[31]  Wen-Hsiang Tsai,et al.  Reduction of color space dimensionality by moment-preserving thresholding and its application for edge detection in color images , 1996, Pattern Recognit. Lett..

[32]  Terrance L. Huntsberger,et al.  Color edge detection , 1985, Pattern Recognit. Lett..

[33]  José R. A. Torreão,et al.  Signal differentiation through a Green's function approach , 2002, Pattern Recognit. Lett..

[34]  Recep Demirci,et al.  Similarity relation matrix-based color edge detection , 2007 .

[35]  Binu P. Chacko,et al.  Pre and Post Processing Approaches in Edge Detection for Character Recognition , 2010, 2010 12th International Conference on Frontiers in Handwriting Recognition.

[36]  M. Abidi,et al.  Detection and classification of edges in color images , 2005, IEEE Signal Processing Magazine.

[37]  M. S. Amaral,et al.  Efficient, recursively implemented differential operator, with application to edge detection , 2006, Pattern Recognit. Lett..

[38]  F. Russo,et al.  Color edge detection in presence of gaussian noise using nonlinear pre-filtering , 2003, Proceedings of the 20th IEEE Instrumentation Technology Conference (Cat. No.03CH37412).

[39]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[40]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..