Ultrafast Excitonic Behavior in Two-Dimensional Metal–Semiconductor Heterostructure

The excitonic behavior in two-dimensional (2D) heterostructures of transition metal dichalcogenide atomic layers has attracted much attention. Here, we report, for the first time, the ultrafast beh...

[1]  Christopher M. Smyth,et al.  WSe2-contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions , 2017 .

[2]  Qiyuan He,et al.  Recent Advances in Ultrathin Two-Dimensional Nanomaterials. , 2017, Chemical reviews.

[3]  A. Chernikov,et al.  Direct Observation of Ultrafast Exciton Formation in a Monolayer of WSe2. , 2017, Nano letters.

[4]  Xiaodong Xu,et al.  Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures , 2017, Science Advances.

[5]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[6]  B. Cho,et al.  Alloyed 2D Metal-Semiconductor Heterojunctions: Origin of Interface States Reduction and Schottky Barrier Lowering. , 2016, Nano letters.

[7]  Wei Chen,et al.  Observation of Strong Interlayer Coupling in MoS2/WS2 Heterostructures , 2016, Advanced materials.

[8]  Dong Jae Kim,et al.  Alloyed 2D Metal-Semiconductor Atomic Layer Junctions. , 2016, Nano letters.

[9]  Su-Huai Wei,et al.  Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier , 2016, Science Advances.

[10]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[11]  J. Robertson,et al.  3D Behavior of Schottky Barriers of 2D Transition-Metal Dichalcogenides. , 2015, ACS applied materials & interfaces.

[12]  F. Rana,et al.  Surface Recombination Limited Lifetimes of Photoexcited Carriers in Few-Layer Transition Metal Dichalcogenide MoS₂. , 2015, Nano letters.

[13]  Junhong Chen,et al.  Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors , 2015, Nature Communications.

[14]  A. Morpurgo,et al.  Strong interface-induced spin–orbit interaction in graphene on WS2 , 2015, Nature Communications.

[15]  F. Rana,et al.  Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2. , 2014, Nano letters.

[16]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[17]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[18]  Hsin-Ying Chiu,et al.  Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. , 2014, ACS nano.

[19]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[20]  A. Balocchi,et al.  Exciton dynamics in WSe 2 bilayers , 2014, 1409.8553.

[21]  K. Banerjee,et al.  MoS₂ field-effect transistor for next-generation label-free biosensors. , 2014, ACS nano.

[22]  R. T. Tung The physics and chemistry of the Schottky barrier height , 2014 .

[23]  Litao Sun,et al.  Synthesis and Optical Properties of Large‐Area Single‐Crystalline 2D Semiconductor WS2 Monolayer from Chemical Vapor Deposition , 2014 .

[24]  Yu-Lun Chueh,et al.  Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures , 2014, Scientific Reports.

[25]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[26]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[27]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[28]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[29]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[30]  Dieter K. Schroder,et al.  Carrier lifetimes in silicon , 1997 .