A room temperature single photon source in silicon carbide

We report the first observation of stable single photon sources in an electronic and photonic device-friendly material, silicon carbide (SiC). SiC is a viable material for implementing quantum communication, computation and photonic technologies.

[1]  Talon,et al.  Photon antibunching in the fluorescence of a single dye molecule trapped in a solid. , 1992, Physical review letters.

[2]  Rogier Verberk,et al.  Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy , 2011 .

[3]  Pál Maák,et al.  Silicon carbide quantum dots for bioimaging , 2013 .

[4]  Tadashi Ito,et al.  Ultrahigh-quality silicon carbide single crystals , 2004, Nature.

[5]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[6]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[7]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[8]  J. Meijer,et al.  Optical detection of a single rare-earth ion in a crystal , 2012, Nature Communications.

[9]  Martin Fischer,et al.  Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium , 2010, 1008.4736.

[10]  Jonathan Y. Lee,et al.  Silicon carbide microdisk resonator. , 2013, Optics letters.

[11]  Á. Gali Excitation spectrum of point defects in semiconductors studied by time-dependent density functional theory , 2012 .

[12]  Igor Aharonovich,et al.  Chromium single-photon emitters in diamond fabricated by ion implantation , 2010 .

[13]  Bob B. Buckley,et al.  Room temperature coherent control of defect spin qubits in silicon carbide , 2011, Nature.

[14]  J. Lundeen,et al.  Direct measurement of the quantum wavefunction , 2011, Nature.

[15]  Igor Aharonovich,et al.  Two-level ultrabright single photon emission from diamond nanocrystals. , 2009, Nano letters.

[16]  Sandu Popescu,et al.  A Quantum Delayed-Choice Experiment , 2012, Science.

[17]  J. Steeds Photoluminescence study of the carbon antisite-vacancy pair in4H- and6H-SiC , 2009 .

[18]  J. Steeds,et al.  Transmission electron microscope radiation damage of 4H and 6H SiC studied by photoluminescence spectroscopy , 2002 .

[19]  D. DiVincenzo Quantum bits: Better than excellent. , 2010, Nature Materials.

[20]  Yun Wah Lam,et al.  3C-SiC nanocrystals as fluorescent biological labels. , 2008, Small.

[21]  Roland Madar,et al.  Materials science: Silicon carbide in contention , 2004, Nature.

[22]  Peter Michler,et al.  Quantum correlation among photons from a single quantum dot at room temperature , 2000, Nature.

[23]  A. Politi,et al.  Shor’s Quantum Factoring Algorithm on a Photonic Chip , 2009, Science.

[24]  G. Astakhov,et al.  Silicon carbide light-emitting diode as a prospective room temperature source for single photons , 2013, Scientific Reports.

[25]  O. Benson,et al.  Ultrabright and efficient single-photon generation based on nitrogen-vacancy centres in nanodiamonds on a solid immersion lens , 2010, 1011.1822.

[26]  Polytype control of spin qubits in silicon carbide , 2013, Nature communications.

[27]  Shota Yamada,et al.  Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths , 2011 .

[28]  Alexander Mattausch,et al.  Ab initio study of the annealing of vacancies and interstitials in cubic SiC: Vacancy-interstitial recombination and aggregation of carbon interstitials , 2004 .

[29]  Angelo Gulinatti,et al.  Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation , 2012, Scientific Reports.

[30]  T. Umeda,et al.  Identification of positively charged carbon antisite-vacancy pairs in 4H-SiC , 2007 .

[31]  E. Janzén,et al.  Identification of the carbon antisite-vacancy pair in 4H-SiC. , 2006, Physical review letters.

[32]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[33]  E. Janzén,et al.  Accurate defect levels obtained from the HSE06 range-separated hybrid functional , 2010 .

[34]  P. Baranov,et al.  Room temperature coherent spin alignment of silicon vacancies in 4H- and 6H-SiC. , 2012, Physical review letters.