Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods
暂无分享,去创建一个
[1] H. D. Brunk,et al. AN EMPIRICAL DISTRIBUTION FUNCTION FOR SAMPLING WITH INCOMPLETE INFORMATION , 1955 .
[2] H. D. Brunk. Maximum Likelihood Estimates of Monotone Parameters , 1955 .
[3] Constance van Eeden,et al. Testing and estimating ordered parameters of probability distribution , 1958 .
[4] D. J. Bartholomew,et al. A TEST OF HOMOGENEITY FOR ORDERED ALTERNATIVES. II , 1959 .
[5] R. E. Miles. THE COMPLETE AMALGAMATION INTO BLOCKS, BY WEIGHTED MEANS, OF A FINITE SET OF REAL NUMBERS , 1959 .
[6] Stephen Warshall,et al. A Theorem on Boolean Matrices , 1962, JACM.
[7] J. Kruskal. Nonmetric multidimensional scaling: A numerical method , 1964 .
[8] R. Potthoff,et al. A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .
[9] J. Danskin. The Theory of Max-Min, with Applications , 1966 .
[10] E. M. L. Beale,et al. Nonlinear Programming: A Unified Approach. , 1970 .
[11] H. D. Brunk,et al. The Isotonic Regression Problem and its Dual , 1972 .
[12] J. Kalbfleisch. Statistical Inference Under Order Restrictions , 1975 .
[13] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[14] Jan de Leeuw,et al. Correctness of Kruskal's algorithms for monotone regression with ties , 1977 .
[15] Richard L. Dykstra. An isotonic regression algorithm , 1981 .
[16] Philip E. Gill,et al. Practical optimization , 1981 .
[17] R. Dykstra,et al. An Algorithm for Isotonic Regression for Two or More Independent Variables , 1982 .
[18] Eliane R. Panier,et al. An active set method for solving linearly constrained nonsmooth optimization problems , 1987, Math. Program..
[19] F. T. Wright,et al. Order restricted statistical inference , 1988 .
[20] Michael J. Best,et al. Active set algorithms for isotonic regression; A unifying framework , 1990, Math. Program..
[21] Ulf Strömberg,et al. An algorithm for isotonic regression with arbitrary convex distance function , 1991 .
[22] Michael J. Best,et al. Minimizing Separable Convex Functions Subject to Simple Chain Constraints , 1999, SIAM J. Optim..
[23] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[24] Ravindra K. Ahuja,et al. A Fast Scaling Algorithm for Minimizing Separable Convex Functions Subject to Chain Constraints , 2001, Oper. Res..
[25] Oleg Burdakov,et al. A generalised PAV algorithm for monotonic regression in several variables , 2004 .
[26] Wei Chu,et al. Bayesian support vector regression using a unified loss function , 2004, IEEE Transactions on Neural Networks.
[27] W. Wien. Econometric Computing with HC and HAC Covariance Matrix Estimators , 2004 .
[28] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[29] A. Zeileis. Econometric Computing with HC and HAC Covariance Matrix Estimators , 2004 .
[30] Kurt Hornik,et al. A CLUE for CLUster Ensembles , 2005 .
[31] Editors-in-chief,et al. Encyclopedia of statistics in behavioral science , 2005 .
[32] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[33] Jürgen Hansohm. Algorithms and error estimations for monotone regression on partially preordered sets , 2007 .
[34] Korbinian Strimmer,et al. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates , 2008, Bioinform..
[35] Patrick Mair,et al. Multidimensional Scaling Using Majorization: SMACOF in R , 2008 .
[36] C Mittermaier,et al. Reliability of posturographic measurements in the assessment of impaired sensorimotor function in chronic low back pain. , 2009, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology.