Middle East versus Saharan dust extinction-to-backscatter ratios

Abstract. Four years (2010–2013) of observations with polarization lidar and sun/sky photometer at the combined European Aerosol Research Lidar Network (EARLINET) and Aerosol Robotic Network (AERONET) site of Limassol (34.7° N, 33° E), Cyprus, were used to compare extinction-to-backscatter ratios (lidar ratios) for desert dust from Middle East deserts and the Sahara. In an earlier article, we analyzed one case only and found comparably low lidar ratios

[1]  A. Ångström The parameters of atmospheric turbidity , 1964 .

[2]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[3]  C. Flamant,et al.  LIDAR DETERMINATION OF THE ENTRAINMENT ZONE THICKNESS AT THE TOP OF THE UNSTABLE MARINE ATMOSPHERIC BOUNDARY LAYER , 1997 .

[4]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[5]  R. Draxler An Overview of the HYSPLIT_4 Modelling System for Trajectories, Dispersion, and Deposition , 1998 .

[6]  R. Draxler NOAA Technical Memorandum ERL ARL-224 DESCRIPTION OF THE HYSPLIT_4 MODELING SYSTEM , 1999 .

[7]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[8]  T. Eck,et al.  Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements , 2000 .

[9]  Albert Ansmann,et al.  One‐year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar , 2001 .

[10]  A. Ansmann,et al.  Dual‐wavelength Raman lidar observations of the extinction‐to‐backscatter ratio of Saharan dust , 2002 .

[11]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[12]  A. Levine,et al.  New estimates of the storage permanence and ocean co-benefits of enhanced rock weathering , 2023, PNAS nexus.

[13]  Christos Zerefos,et al.  Four‐year aerosol observations with a Raman lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET) , 2005 .

[14]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[15]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[16]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[17]  L. Mona,et al.  Saharan dust intrusions in the Mediterranean area: Three years of Raman lidar measurements , 2006 .

[18]  A. Ansmann Ground-truth aerosol lidar observations: can the Klett solutions obtained from ground and space be equal for the same aerosol case? , 2006, Applied optics.

[19]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[20]  Albert Ansmann,et al.  Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. , 2007, Applied optics.

[21]  L. Mona,et al.  Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002) , 2008 .

[22]  D. Winker,et al.  A height resolved global view of dust aerosols from the first year CALIPSO lidar measurements , 2008 .

[23]  T. Eck,et al.  Spatial and temporal variability of column-integrated aerosol optical properties in the southern Arabian Gulf and United Arab Emirates in summer , 2008 .

[24]  S. Piketh,et al.  An overview of UAE2 flight operations: Observations of summertime atmospheric thermodynamic and aerosol profiles of the southern Arabian Gulf , 2008 .

[25]  Rtin W Irth Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006 , 2009 .

[26]  Albert Ansmann,et al.  Vertically resolved separation of dust and smoke over Cape Verde using multiwavelength Raman and polarization lidars during Saharan Mineral Dust Experiment 2008 , 2009 .

[27]  R. Engelmann,et al.  Dust and smoke transport from Africa to South America: Lidar profiling over Cape Verde and the Amazon rainforest , 2009 .

[28]  V. Freudenthaler,et al.  Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006 , 2009 .

[29]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[30]  Albert Ansmann,et al.  Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM , 2009 .

[31]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[32]  B. Weinzierl,et al.  Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006 , 2009 .

[33]  V. Freudenthaler,et al.  Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SAMUM 2006: Shape‐independent particle properties , 2010 .

[34]  V. Freudenthaler,et al.  The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany , 2010 .

[35]  R. Engelmann,et al.  Further evidence for significant smoke transport from Africa to Amazonia , 2011 .

[36]  V. Freudenthaler,et al.  Characterization of Saharan dust, marine aerosols and mixtures of biomass-burning aerosols and dust by means of multi-wavelength depolarization and Raman lidar measurements during SAMUM 2 , 2011 .

[37]  R. Ferrare,et al.  Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples , 2011 .

[38]  Josef Gasteiger,et al.  Modelling lidar-relevant optical properties of complex mineral dust aerosols , 2011 .

[39]  Albert Ansmann,et al.  Profiling of Saharan dust and biomass-burning smoke with multiwavelength polarization Raman lidar at Cape Verde , 2011 .

[40]  B. Weinzierl,et al.  Aerosol classification by airborne high spectral resolution lidar observations , 2012 .

[41]  Charles A. Trepte,et al.  Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust , 2012 .

[42]  A. M. Silva,et al.  Two years of free‐tropospheric aerosol layers observed over Portugal by lidar , 2013 .

[43]  A. Ansmann,et al.  Low Arabian dust extinction‐to‐backscatter ratio , 2013 .

[44]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[45]  A. Ansmann,et al.  Optimizing CALIPSO Saharan dust retrievals , 2013 .

[46]  A. Ansmann,et al.  Fine and coarse dust separation with polarization lidar , 2014 .

[47]  A. Ansmann,et al.  Dust-related ice nuclei profiles from polarization lidar: methodology and case studies , 2014 .

[48]  A. Ansmann,et al.  Injection of mineral dust into the free troposphere during fire events observed with polarization lidar at Limassol, Cyprus , 2014 .

[49]  A. Ansmann,et al.  Estimated desert-dust ice nuclei profiles from polarization lidar: methodology and case studies , 2015 .

[50]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .