Renormalizability of nonlocal quantum gravity coupled to matter
暂无分享,去创建一个
[1] G. Calcagni,et al. Quantum field theory with ghost pairs , 2022, Journal of High Energy Physics.
[2] G. Calcagni,et al. Tree-level scattering amplitudes in nonlocal field theories , 2021, Journal of High Energy Physics.
[3] L. Modesto. The Higgs mechanism in nonlocal field theory , 2021, Journal of High Energy Physics.
[4] N. Ohta,et al. Effective action from the functional renormalization group , 2020, The European Physical Journal C.
[5] I. Shapiro,et al. Gauge invariant renormalizability of quantum gravity , 2019, Physical Review D.
[6] F. Briscese,et al. Cutkosky rules and perturbative unitarity in Euclidean nonlocal quantum field theories , 2018, Physical Review D.
[7] Leslaw Rachwal,et al. Nonlocal quantum gravity: A review , 2017 .
[8] L. Modesto,et al. Scattering amplitudes in super-renormalizable gravity , 2015, 1506.04589.
[9] L. Modesto,et al. Universally finite gravitational and gauge theories , 2015, 1503.00261.
[10] L. Modesto,et al. Super-renormalizable and finite gravitational theories , 2014, 1407.8036.
[11] A. Mazumdar,et al. Towards singularity- and ghost-free theories of gravity. , 2011, Physical review letters.
[12] Leonardo Modesto,et al. Super-renormalizable Quantum Gravity , 2011, 1107.2403.
[13] G. Hooft. A Class of Elementary Particle Models Without Any Adjustable Real Parameters , 2011, 1104.4543.
[14] J. López,et al. Some Remarks on High Derivative Quantum Gravity , 1996, hep-th/9610006.
[15] E. Elizalde,et al. A four-dimensional theory for quantum gravity with conformal and non-conformal explicit solutions , 1994, hep-th/9412061.
[16] A. V. D. Ven. Two-loop quantum gravity , 1992 .
[17] Maeda. Inflation as a transient attractor in R2 cosmology. , 1988, Physical review. D, Particles and fields.
[18] N. Krasnikov. Nonlocal gauge theories , 1987 .
[19] Augusto Sagnotti,et al. The ultraviolet behavior of Einstein gravity , 1986 .
[20] A. Vilenkin,et al. Classical and quantum cosmology of the Starobinsky inflationary model. , 1985, Physical review. D, Particles and fields.
[21] A. Barvinsky,et al. The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity , 1985 .
[22] A. Starobinsky,et al. A new type of isotropic cosmological models without singularity , 1980 .
[23] M. Tonin,et al. Quantum gravity with higher derivative terms , 1978 .
[24] K. Stelle. Renormalization of Higher Derivative Quantum Gravity , 1977 .
[25] F. Englert,et al. Conformal invariance in quantum gravity , 1976 .
[26] S. Deser,et al. One-loop divergences of quantized Einstein-Maxwell fields , 1974 .
[27] Ermis Mitsou. Non-local Gravity , 2016 .
[28] E. Marcus. Higher-derivative gauge and gravitational theories , 1998 .
[29] G. Hooft,et al. One loop divergencies in the theory of gravitation , 1974 .