Proton Plasma Asymmetries Between Venus' Quasi‐Perpendicular and Quasi‐Parallel Magnetosheaths

Proton plasma asymmetries between the hemispheres of Venus' dayside magnetosheath lying downstream of the quasi‐perpendicular (q⊥) and quasi‐parallel (q‖) sides of the bow shock are characterized using measurements taken by a mass‐energy spectrometer. This characterization enables comparison to analogous Earth studies, thereby providing insight as to which plasma phenomena, such as turbulent particle heating, contribute in creating the observed plasma asymmetries in planetary magnetosheaths. A database of dayside bow‐shock crossings along with magnetosheath proton densities, bulk speeds, temperatures, and magnetic‐field strengths is manually constructed by selecting measurements taken during stable solar‐wind conditions. Ratios of these magnetosheath proton parameters are calculated as functions of distance from the central meridian and the upstream Alfvén Mach number to quantify the q⊥/‖ asymmetries. The density and bulk‐speed exhibit q‖‐favored asymmetries, mirroring those observed at Earth, whereas the magnetic‐field strength reveals no significant asymmetry despite expectations based on simulations. The temperatures perpendicular (T⊥) and parallel (T‖) to the background magnetic field have q⊥‐favored asymmetries while the temperature anisotropy T⊥/T‖ exhibits a q‖‐favored asymmetry. This trend is opposite to that seen at Earth, suggesting that the different spatial scales of the two planets' magnetosheaths may affect the impact of turbulent processes on global plasma properties.

[1]  Zhang Yiteng,et al.  Statistical Analysis of the Distribution and Evolution of Mirror Structures in the Martian Magnetosheath , 2022, The Astrophysical Journal.

[2]  Sebastián Rojas Mata,et al.  Proton Temperature Anisotropies in the Venus Plasma Environment During Solar Minimum and Maximum , 2021, Journal of Geophysical Research: Space Physics.

[3]  N. Raouafi,et al.  Kinetic‐Scale Turbulence in the Venusian Magnetosheath , 2020, Geophysical Research Letters.

[4]  J. Luhmann,et al.  Variability of the Solar Wind Flow Asymmetry in the Martian Magnetosheath Observed by MAVEN , 2020, Geophysical Research Letters.

[5]  T. Pulkkinen,et al.  Oxygen Ion Escape From Venus Is Modulated by Ultra‐Low Frequency Waves , 2020, Geophysical Research Letters.

[6]  M. Palmroth,et al.  Asymmetries in the Earth's dayside magnetosheath: results from global hybrid-Vlasov simulations , 2020, Annales Geophysicae.

[7]  Xiaojun Xu,et al.  South‐north asymmetry of proton density distribution in the Martian magnetosheath , 2020 .

[8]  N. Gupta,et al.  Dawn‐Dusk Asymmetries in the Martian Upper Atmosphere , 2019, Journal of Geophysical Research: Planets.

[9]  A. Possolo,et al.  Asymmetrical uncertainties , 2019, Metrologia.

[10]  M. Wieser,et al.  Proton Temperature Anisotropies in the Plasma Environment of Venus , 2019, Journal of Geophysical Research: Space Physics.

[11]  T. Zhang,et al.  Magnetic Fluctuations and Turbulence in the Venusian Magnetosheath Downstream of Different Types of Bow Shock , 2018, Journal of Geophysical Research: Space Physics.

[12]  Tielong Zhang,et al.  Solar cycle variation of the venus magnetic barrier , 2018, Planetary and Space Science.

[13]  Urs Ganse,et al.  Vlasov methods in space physics and astrophysics , 2018, Living reviews in computational astrophysics.

[14]  B. Jakosky,et al.  Flows, Fields, and Forces in the Mars‐Solar Wind Interaction , 2017 .

[15]  M. Vogt,et al.  Dawn‐Dusk Asymmetries in Jupiter's Magnetosphere , 2017 .

[16]  S. Krimigis,et al.  Local Time Asymmetries in Saturn's Magnetosphere , 2017 .

[17]  T. Sundberg Dawn‐Dusk Asymmetries in Mercury's Magnetosphere , 2017 .

[18]  E. Echer,et al.  Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft , 2017 .

[19]  A. Runov,et al.  Dawn-Dusk Asymmetries in Planetary Plasma Environments , 2017 .

[20]  M. Volwerk,et al.  Asymmetries in the Magnetosheath Field Draping on Venus' Nightside , 2017 .

[21]  R. Clancy,et al.  The thermal structure of the Venus atmosphere: Intercomparison of Venus Express and ground based observations of vertical temperature and density profiles , 2017 .

[22]  J. Luhmann,et al.  Solar Wind Interaction and Impact on the Venus Atmosphere , 2017 .

[23]  T. Pulkkinen,et al.  Temperature variations in the dayside magnetosheath and their dependence on ion‐scale magnetic structures: THEMIS statistics and measurements by MMS , 2017 .

[24]  D. Brain,et al.  Atmospheric escape from unmagnetized bodies , 2016 .

[25]  K. Glassmeier,et al.  Mirror mode waves in Venus's magnetosheath: solar minimum vs. solar maximum , 2016 .

[26]  J. Luhmann,et al.  Dynamics of planetary ions in the induced magnetospheres of Venus and Mars , 2016 .

[27]  T. Pulkkinen,et al.  A statistical study of the dawn‐dusk asymmetry of ion temperature anisotropy and mirror mode occurrence in the terrestrial dayside magnetosheath using THEMIS data , 2015 .

[28]  W. Wan,et al.  Solar zenith angle‐dependent asymmetries in Venusian bow shock location revealed by Venus Express , 2015 .

[29]  H. Karimabadi,et al.  A statistical study into the spatial distribution and dawn‐dusk asymmetry of dayside magnetosheath ion temperatures as a function of upstream solar wind conditions , 2015 .

[30]  J. Souček,et al.  Magnetosheath plasma stability and ULF wave occurrence as a function of location in the magnetosheath and upstream bow shock parameters , 2015 .

[31]  S. Wing,et al.  Dawn–dusk asymmetries in the coupled solar wind–magnetosphere–ionosphere system: a review , 2014, 1701.04701.

[32]  David G. Sibeck,et al.  The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas , 2014 .

[33]  J. Du,et al.  Asymmetries of the magnetic field line draping shape around Venus , 2013 .

[34]  O. Witasse,et al.  Determination of local plasma densities with the MARSIS radar: Asymmetries in the high‒altitude Martian ionosphere , 2013 .

[35]  G. Ueno,et al.  Ion heating by broadband electromagnetic waves in the magnetosheath and across the magnetopause , 2013 .

[36]  K. Nykyri,et al.  The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame , 2013 .

[37]  R. Jarvinen,et al.  Hemispheric asymmetries of the Venus plasma environment , 2013 .

[38]  S. Markidis,et al.  SWIFF: Space weather integrated forecasting framework , 2013 .

[39]  Yansen Wang,et al.  Dawn‐dusk asymmetries in the Earth's magnetosheath , 2012 .

[40]  F. Duru,et al.  Upper ionosphere of Mars is not axially symmetrical , 2012, Earth, Planets and Space.

[41]  F. Duru,et al.  The Induced Magnetospheres of Mars, Venus, and Titan , 2011 .

[42]  J. Chaufray,et al.  Modeling of Venus, Mars, and Titan , 2011 .

[43]  S. Barabash,et al.  O+ outflow channels around Venus controlled by directions of the interplanetary magnetic field: Observations of high energy O+ ions around the terminator , 2011 .

[44]  Wolfgang Baumjohann,et al.  Statistical study of low-frequency magnetic field fluctuations near Venus under the different interplanetary magnetic field orientations , 2010 .

[45]  Edmond C. Roelof,et al.  Venusian bow shock as seen by the ASPERA-4 ion instrument on Venus Express , 2010 .

[46]  C. Russell,et al.  Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail , 2010 .

[47]  Z. Voros,et al.  Intermittent turbulence, noisy fluctuations, and wavy structures in the Venusian magnetosheath and wake , 2008, Journal of Geophysical Research.

[48]  S. Barabash,et al.  Asymmetry of plasma fluxes at Mars. ASPERA-3 observations and hybrid simulations , 2008 .

[49]  Edmond C. Roelof,et al.  Location of the bow shock and ion composition boundaries at Venus—initial determinations from Venus Express ASPERA-4 , 2008 .

[50]  J. Souček,et al.  Properties of magnetosheath mirror modes observed by Cluster and their response to changes in plasma parameters , 2008 .

[51]  C. Russell,et al.  The loss of ions from Venus through the plasma wake , 2007, Nature.

[52]  M. Maggi,et al.  The Analyser of Space Plasmas and Energetic Atoms (ASPERA-4) for the Venus Express mission , 2007 .

[53]  Jean-Pierre Lebreton,et al.  Magnetic field investigation of the Venus plasma environment: Expected new results from Venus Express , 2006 .

[54]  J. Forbes,et al.  The thermosphere of Venus and its exploration by a Venus Express Accelerometer Experiment , 2006 .

[55]  Joe Zender,et al.  Venus Express science planning , 2006 .

[56]  S. Schwartz,et al.  Dawn-dusk asymmetries and sub-Alfvenic flow in the high and low latitude magnetosheath , 2005 .

[57]  Andrea Accomazzo,et al.  Venus Express—The first European mission to Venus , 2005 .

[58]  Z. Němeček,et al.  Spatial distribution of the magnetosheath ion flux , 2002 .

[59]  Stephen R Quake,et al.  Significance and statistical errors in the analysis of DNA microarray data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[60]  S. Stahara Adventures in the magnetosheath: two decades of modeling and planetary applications of the Spreiter magnetosheath model , 2002 .

[61]  J. Richardson,et al.  The magnetosheaths of the outer planets , 2002 .

[62]  J. Richardson,et al.  A dawn‐dusk density asymmetry in Earth's magnetosheath , 2001 .

[63]  S. Schwartz,et al.  Low-frequency waves in the Earth’s magnetosheath: present status , 1996 .

[64]  J. Luhmann The inner magnetosheath of Venus: An analogue for Earth? , 1995 .

[65]  S. Barabash,et al.  Proton flow in the Martian magnetosheath , 1994 .

[66]  B. Anderson,et al.  Inverse correlations between the ion temperature anisotropy and plasma beta in the Earth's quasi-parallel magnetosheath , 1994 .

[67]  J. Spreiter,et al.  Gasdynamic and magnetohydrodynamic modeling of the magnetosheath: A tutorial , 1994 .

[68]  C. Russell,et al.  Solar cycle 21 effects on the Interplanetary Magnetic Field and related parameters at 0.7 and 1.0 AU , 1993 .

[69]  Brian J. Anderson,et al.  Ion anisotropy instabilities in the magnetosheath , 1993 .

[70]  S. Peter Gary,et al.  The mirror and ion cyclotron anisotropy instabilities , 1992 .

[71]  Christopher T. Russell,et al.  The thickness of the magnetosheath: Constraints on the polytropic index , 1991 .

[72]  C. Russell,et al.  The magnetic barrier at Venus , 1991 .

[73]  R. Strangeway Plasma waves at Venus , 1991 .

[74]  C. Russell,et al.  Asymmetries in the location of the Venus and Mars bow shock , 1991 .

[75]  C. Russell,et al.  Solar and interplanetary control of the location of the Venus bow shock , 1988 .

[76]  J. Phillips,et al.  Asymmetries in the location of the Venus ionopause , 1988 .

[77]  C. Russell,et al.  Finite Larmor radius effect on ion pickup at Venus , 1987 .

[78]  C. Russell,et al.  On the role of the quasi‐parallel bow shock in ion pickup: A lesson from Venus? , 1987 .

[79]  James A. Slavin,et al.  Solar wind flow about the terrestrial planets 1. Modeling bow shock position and shape , 1981 .

[80]  J. Spreiter,et al.  A new predictive model for determining solar wind-terrestrial planet interactions , 1980 .

[81]  S. Peter Gary,et al.  Proton temperature anisotropy instabilities in the solar wind , 1976 .

[82]  A. Rizzi,et al.  SOLAR WIND FLOW PAST NONMAGNETIC PLANETS: VENUS AND MARS. , 1970 .

[83]  E. C. Fieller THE DISTRIBUTION OF THE INDEX IN A NORMAL BIVARIATE POPULATION , 1932 .

[84]  M. Gangloff,et al.  The LatHyS database for planetary plasma environment investigations: Overview and a case study of data/model comparisons , 2018 .

[85]  R. Lundin,et al.  Plasma Moments in the environment of Mars Mars Express ASPERA-3 Observations , 2006 .

[86]  M. L. Goldstein,et al.  The Magnetosheath , 2005 .

[87]  S. Sheather Density Estimation , 2004 .

[88]  C. Lacombe,et al.  Waves in the Earth's magnetosheath: Observations and interpretations , 1995 .

[89]  J. Luhmann The solar wind interaction with Venus , 1986 .

[90]  A. Hasegawa Drift Mirror Instability in the Magnetosphere , 1969 .

[91]  R. C. Geary The Frequency Distribution of the Quotient of Two Normal Variates , 2022 .