Preference for Flexibility in a Savage Framework

The authors study preferences over Savage acts that map states to opportunity sets and satisfy the Savage axioms. Preferences over opportunity sets may exhibit a preference for flexibility due to an implicit uncertainty about future preferences reflecting anticipated unforeseen contingencies. The main result of the paper characterizes maximization of the expected indirect utility in terms of an 'indirect stochastic dominance' axiom that expresses a preference for 'more opportunities in expectation.' The key technical tool of the paper, conjugate Mobius inversion, allows an alternative representation using Choquet integration and yields a simple proof of D. Kreps's (1979) classic result.

[1]  David M. Kreps A REPRESENTATION THEOREM FOR "PREFERENCE FOR FLEXIBILITY" , 1979 .

[2]  F. J. Anscombe,et al.  A Definition of Subjective Probability , 1963 .

[3]  S. Modica,et al.  Awareness and partitional information structures , 1994 .

[4]  Itzhak Gilboa,et al.  Canonical Representation of Set Functions , 1995, Math. Oper. Res..

[5]  J. Jaffray Linear utility theory for belief functions , 1989 .

[6]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[7]  J. Harsanyi Cardinal Welfare, Individualistic Ethics, and Interpersonal Comparisons of Utility , 1955 .

[8]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[9]  Rakesh K. Sarin,et al.  A SIMPLE AXIOMATIZATION OF NONADDITIVE EXPECTED UTILITY , 1992 .

[10]  Robert A. Jones,et al.  Flexibility and Uncertainty , 1984 .

[11]  Massimo Marinacci Decomposition and Representation of Coalitional Games , 1996, Math. Oper. Res..

[12]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[13]  Paolo Ghirardato,et al.  Coping with ignorance: unforeseen contingencies and non-additive uncertainty , 2001 .

[14]  Barton L. Lipman,et al.  Standard state-space models preclude unawareness , 1998 .

[15]  David Schmeidler,et al.  On the uniqueness of subjective probabilities , 1993 .

[16]  R. H. Strotz Myopia and Inconsistency in Dynamic Utility Maximization , 1955 .

[17]  Sujoy Mukerji,et al.  Understanding the nonadditive probability decision model , 1997 .

[18]  Ricardo Arlegi,et al.  Incomplete preferences and the preference for flexibility , 2001, Math. Soc. Sci..

[19]  K. Nehring ON THE INTERPRETATION OF SARIN AND WAKKER'S "A SIMPLE AXIOMATIZATION OF NONADDITIVE EXPECTED UTILITY" , 1994 .

[20]  G. Choquet Theory of capacities , 1954 .

[21]  L. Shapley A Value for n-person Games , 1988 .