Low-voltage flexible organic electronics based on high-performance sol-gel titanium dioxide dielectric.

In this letter, we report that high-performance insulating films can be generated by judicious control over the microstructure of sol-gel-processed titanium dioxide (TiO2) films, typically known as wide-bandgap semiconductors. The resultant device made of 23 nm-thick TiO2 dielectric layer exhibits a low leakage current density of ∼1 × 10(-7) A cm(-2) at 2 V and a large areal capacitance of 560 nF cm(-2) with the corresponding dielectric constant of 27. Finally, low-voltage flexible organic thin-film transistors were successfully demonstrated by incorporating this versatile solution-processed oxide dielectric material into pentacene transistors on polyimide substrates.

[1]  K. Koumoto,et al.  Light-excited superhydrophilicity of amorphous TiO2 thin films deposited in an aqueous peroxotitanate solution. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[2]  Han-Ping D. Shieh,et al.  Low-voltage organic thin-film transistors with polymeric nanocomposite dielectrics , 2006 .

[3]  Takao Someya,et al.  Flexible Low‐Voltage Organic Transistors and Circuits Based on a High‐Mobility Organic Semiconductor with Good Air Stability , 2010, Advanced materials.

[4]  Rajender S. Varma,et al.  Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol−Gel Methods Modified with Ionic Liquid and Surfactant Molecules , 2006 .

[5]  H. Akinaga,et al.  Effect of Annealing Temperature on $\hbox{TiO}_{2}$ -Based Thin-Film-Transistor Performance , 2012, IEEE Electron Device Letters.

[6]  Xiong Gong,et al.  New Architecture for High‐Efficiency Polymer Photovoltaic Cells Using Solution‐Based Titanium Oxide as an Optical Spacer , 2006 .

[7]  Sheng-Joue Young,et al.  TiO2-Based Thin Film Transistors with Amorphous and Anatase Channel Layer , 2011 .

[8]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[9]  Wi Hyoung Lee,et al.  Low-voltage organic transistors with titanium oxide/polystyrene bilayer dielectrics , 2009 .

[10]  M. Wong,et al.  Reactively sputtered N-doped titanium oxide films as visible-light photocatalyst , 2006 .

[11]  Landong Li,et al.  Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: anatase versus rutile. , 2013, Physical chemistry chemical physics : PCCP.

[12]  A. Fujishima,et al.  TiO2 Photocatalysis: A Historical Overview and Future Prospects , 2005 .

[13]  A. Jen,et al.  Multifunctional phosphonic acid self-assembled monolayers on metal oxides as dielectrics, interface modification layers and semiconductors for low-voltage high-performance organic field-effect transistors. , 2012, Physical chemistry chemical physics : PCCP.

[14]  Tobin J Marks,et al.  High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. , 2010, Chemical reviews.

[15]  Raoul Schroeder,et al.  Low‐Voltage, High‐Performance Organic Field‐Effect Transistors with an Ultra‐Thin TiO2 Layer as Gate Insulator , 2005 .

[16]  Alan J. Heeger,et al.  Extended Lifetime of Organic Field‐Effect Transistors Encapsulated with Titanium Sub‐Oxide as an ‘Active’ Passivation/Barrier Layer , 2009 .

[17]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[18]  A. Biris,et al.  TiO2 THIN FILMS PREPARED BY SPIN COATING TECHNIQUE , 2011 .

[19]  Zheshen Li,et al.  Influence of the OH groups on the photocatalytic activity and photoinduced hydrophilicity of microwave assisted sol–gel TiO2 film , 2009 .

[20]  M. Kosec,et al.  The effect of the valence state of titanium ions on the hydrophilicity of ceramics in the titanium–oxygen system , 2008 .

[21]  Theo Siegrist,et al.  Pentacene-based thin film transistors with titanium oxide-polystyrene/polystyrene insulator blends: High mobility on high K dielectric films , 2007 .

[22]  Fuzhi Huang,et al.  Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High‐Performance Dye‐Sensitized Solar Cells , 2009 .

[23]  J. Ouyang,et al.  Universal solution-processed high-k amorphous oxide dielectrics for high-performance organic thin film transistors , 2014 .

[24]  Zhenan Bao,et al.  Cross-Linked Polymer Gate Dielectric Films for Low-Voltage Organic Transistors , 2009 .

[25]  Paul H. Wöbkenberg,et al.  TiO2 thin-film transistors fabricated by spray pyrolysis , 2010 .

[26]  A. Salleo,et al.  Solution-Processable Zirconium Oxide Gate Dielectrics for Flexible Organic Field Effect Transistors Operated at Low Voltages , 2013 .

[27]  Takayuki Kuwabara,et al.  Mechanistic insights into UV-induced electron transfer from PCBM to titanium oxide in inverted-type organic thin film solar cells using AC impedance spectroscopy. , 2010, ACS applied materials & interfaces.

[28]  Lei Zhang,et al.  Oligothiophene semiconductors: synthesis, characterization, and applications for organic devices. , 2014, ACS applied materials & interfaces.

[29]  S. Mali,et al.  Synthesis, Characterization of Hydrothermally Grown MWCNT-TiO2 Photoelectrodes and Their Visible Light Absorption Properties , 2012 .