A multi-period network design problem for cellular telecommunication systems

Abstract Mathematical Programming models for multi-period network design problems, which arise in cellular telecommunication systems are presented. The underlying network topologies range from a simple star to complex multi-layer Steiner-like networks. Linear programming, Lagrangian relaxation, and branch-and-cut heuristics are proposed and a polynomial-bounded heuristic based on an interior point linear programming implementation is described. Extensive computational results are presented on a number of randomly generated problem sets and the performance of the heuristic(s) are compared with an optimal branch-and-bound algorithm.