Single-event phenomena in GaAs devices and circuits

The single-event upset (SEU) characteristics of GaAs devices and circuits are reviewed. GaAs FET-based integrated circuits (ICs) are susceptible to upsets from both cosmic-ray heavy ions and protons trapped in the Earth's radiation belts. The origin of the SEU sensitivity of GaAs ICs is discussed in terms of both device-level and circuit-level considerations. At the device level, efficient charge-enhancement mechanisms through which more charge can be collected than is deposited by the ion have a significant negative impact on the SEU characteristics of GaAs ICs. At the circuit level, different GaAs digital logic topologies exhibit different levels of sensitivity to SEU because of variations in parameters, including logic levels, capacitances, and the degree of gate or peripheral isolation. The operational and SEU characteristics of several different GaAs logic families are discussed. Recent advances in materials and processing that provide possible solutions to the SEU problem are addressed.

[1]  A. B. Campbell,et al.  Ion induced charge collection in GaAs MESFETs , 1989 .

[2]  H. B. Dietrich,et al.  Reduction of Long-Term Transient Radiation Response in Ion Implanted GaAs FETs , 1982, IEEE Transactions on Nuclear Science.

[3]  Cheryl J. Dale,et al.  Particle-induced mitigation of SEU sensitivity in high data rate GaAs HIGFET technologies , 1995 .

[4]  A. Prabhakar Digital gallium arsenide upgrades for military systems , 1989, 11th Annual Gallium Arsenide Integrated Circuit (GaAs IC) Symposium.

[5]  A. B. Campbell,et al.  Single-event dynamics of high-performance HBTs and GaAs MESFETs , 1993 .

[6]  A. Johnston,et al.  Single-event upset in GaAs E/D MESFET logic , 1990 .

[7]  Yoshihiko Mizushima,et al.  High Speed Photoresponse Mechanism of a GaAs-MESFET , 1980 .

[8]  F. W. Sexton,et al.  Charge collection in GaAs MESFETs fabricated in semi-insulating substrates , 1995 .

[9]  R. Zuleeg,et al.  Radiation effects in GaAs FET devices , 1989, Proc. IEEE.

[10]  A. B. Campbell,et al.  Single event induced charge transport modeling of GaAs MESFETs , 1993 .

[11]  SEU rate prediction and measurement of GaAs SRAMs onboard the CRRES satellite , 1993 .

[12]  M. Manfra,et al.  New MBE buffer used to eliminate backgating in GaAs MESFETs , 1988, IEEE Electron Device Letters.

[13]  S. E. Diehl,et al.  Suggested Single Event Upset Figure of Merit , 1983, IEEE Transactions on Nuclear Science.

[14]  Jim Nohava,et al.  Heavy ion SEU immunity of a GaAs complementary HIGFET circuit fabricated on a low temperature grown buffer layer , 1995 .

[15]  J.C. Gammel,et al.  The OPFET: A new high speed optical detector , 1978, 1978 International Electron Devices Meeting.

[16]  R. Zuleeg,et al.  SEU of Complementary GaAs Static Rams Due to Heavy Ions , 1984, IEEE Transactions on Nuclear Science.

[17]  T. R. Weatherford,et al.  Laser confirmation of SEU experiments in GaAs MESFET combinational logic (for space application) , 1992 .

[18]  A. B. Campbell,et al.  Charge collection from focussed picosecond laser pulses , 1988 .

[19]  Dale McMorrow,et al.  Proton and heavy ion upsets in GaAs MESFET devices , 1991 .

[20]  A. B. Campbell,et al.  Significant reduction in the soft error susceptibility of GaAs field‐effect transistors with a low‐temperature grown GaAs buffer layer , 1995 .

[21]  A. B. Campbell,et al.  Picosecond charge-collection dynamics in GaAs MESFETs (for space application) , 1992 .

[22]  W.D. Edwards Two and three terminal gallium arsenide FET optical detectors , 1980, IEEE Electron Device Letters.

[23]  Paul W. Marshall,et al.  Heavy ion and proton analysis of a GaAs C-HIGFET SRAM , 1993 .

[24]  A. H. Johnston,et al.  Ion induced charge collection in GaAs MESFETs and its effect on SEU vulnerability , 1991 .

[25]  A. Krotkus,et al.  Picosecond carrier lifetime in GaAs implanted with high doses of As ions: An alternative material to low‐temperature GaAs for optoelectronic applications , 1995 .

[26]  J. Abrokwah,et al.  0.9 V DSP blocks: a 15 ns 4 K SRAM and a 45 ns 16-bit multiply/accumulator , 1994, Proceedings of 1994 IEEE GaAs IC Symposium.

[27]  L. D. Flesner,et al.  High speed response of a GaAs metal‐semiconductor field‐effect transistor to electron‐beam excitation , 1982 .

[28]  A. Peczalski,et al.  Charge-collection mechanisms of heterostructure FETs , 1994 .

[29]  K. Mitsusada,et al.  Effects of a buried p-layer on alpha-particle immunity of MESFET's fabricated on semi-insulating GaAs substrates , 1986, IEEE Electron Device Letters.

[30]  T.F. Carruthers,et al.  Optically induced backgating transients in GaAs FET's , 1985, IEEE Electron Device Letters.

[31]  S. E. Diehl,et al.  Comparisons of Single Event Vulnerability of GaAs SRAMS , 1986, IEEE Transactions on Nuclear Science.

[32]  Robert B. Darling Optical gain and large-signal characteristics of illuminated GaAs MESFET's , 1987 .

[33]  B. D. Shafer,et al.  The design of radiation-hardened ICs for space: a compendium of approaches , 1988, Proc. IEEE.

[34]  M. E. O'Brien,et al.  SEU measurements on HFETs and HFET SRAMs , 1989 .

[35]  M. A. Hopkins,et al.  Charge Collection Measurements on GaAs Devices Fabricated on Semi-Insulating Substrates , 1984, IEEE Transactions on Nuclear Science.

[36]  K. Mitsusada,et al.  A bipolar mechanism for alpha-particle-induced soft errors in GaAs integrated circuits , 1989 .

[37]  R. Koga,et al.  Single Event Error Immune CMOS RAM , 1982, IEEE Transactions on Nuclear Science.

[38]  M. A. Hopkins,et al.  Measurements of Alpha-Particle-Induced Charge in GaAs Devices , 1983, IEEE Transactions on Nuclear Science.

[39]  A. B. Campbell,et al.  Alpha-, boron-, silicon- and iron-ion-induced current transients in low-capacitance silicon and GaAs diodes , 1988 .

[40]  W. M. Digby,et al.  Characteristics of SEU Current Transients and Collected Charge in GaAs and Si Devices , 1985, IEEE Transactions on Nuclear Science.

[41]  Cheryl J. Dale,et al.  Charge-collection characteristics of GaAs heterostructure FETs fabricated with a low-temperature grown GaAs buffer layer , 1995 .

[42]  Steven C. Moss Picosecond optoelectronic sampling of electrical waveforms produced by an optically excited field effect transistor , 1987 .

[43]  A. H. Johnston,et al.  A comparison of charge collection effects between GaAs MESFETs and III-V HFETs , 1992 .

[44]  J. F. Salzman,et al.  Charge collection and SEU sensitivity for Ga/As bipolar devices , 1989 .

[45]  W. R. Curtice,et al.  Elimination of charge-enhancement effects in GaAs FETs with a low-temperature grown GaAs buffer layer , 1995 .

[46]  I. Deyhimy Gallium arsenide joins the giants , 1995 .

[47]  Leonard J. Mahoney,et al.  Reduction of sidegating in GaAs analog and digital circuits using a new buffer layer , 1989 .

[48]  S. Buchner,et al.  Dependence of the SEU window of vulnerability of a logic circuit on magnitude of deposited charge , 1993 .

[49]  D. J. Fouts,et al.  Single event upsets in gallium arsenide pseudo-complementary MESFET logic , 1995 .

[50]  Peter J. McNulty,et al.  Intrinsic SEU Reduction from Use of Heterojunctions in Gallium Arsenide Bipolar Circuits , 1987, IEEE Transactions on Nuclear Science.

[51]  A. B. Campbell,et al.  Charge collection in GaAs MESFETs and MODFETs , 1991 .

[52]  A Study of Single Events in GaAs SRAMs , 1985, IEEE Transactions on Nuclear Science.

[53]  P. Mcnulty,et al.  Charge collection in HI/sup 2/L bipolar transistors , 1988 .

[54]  D. Wilson,et al.  Can digital GaAs be used in a space environment? A look at single event upset in GaAs , 1991, [1991] GaAs IC Symposium Technical Digest.

[55]  A. B. Campbell,et al.  Fast charge collection in GaAs MESFETs , 1990 .

[56]  J. C. Ritter,et al.  Single Event Upset Measurements of Gaas E-JFET RAMS , 1983, IEEE Transactions on Nuclear Science.

[57]  D. J. Fouts,et al.  Single event upsets in gallium arsenide dynamic logic , 1994 .

[58]  John R. Hauser,et al.  SEU-hardened silicon bipolar and GaAs MESFET SRAM cells using local redundancy techniques , 1992 .

[59]  B. V. Shanabrook,et al.  Comparison of optical pyrometry and infrared transmission measurements on indium‐free mounted substrates during molecular‐beam epitaxial growth , 1993 .

[60]  Charge Collection in Ga/Aa Test Structures , 1984, IEEE Transactions on Nuclear Science.