Decidable Gödel Description Logics without the Finitely-Valued Model Property

In the last few years, there has been a large effort for analyzing the computational properties of reasoning in fuzzy description logics. This has led to a number of papers studying the complexity of these logics, depending on the chosen semantics. Surprisingly, despite being arguably the simplest form of fuzzy semantics, not much is known about the complexity of reasoning in fuzzy description logics w.r.t. witnessed models over the Godel t-norm. We show that in the logic G-***ALC, reasoning cannot be restricted to finitely-valued models in general. Despite this negative result, we also show that all the standard reasoning problems can be solved in exponential time, matching the complexity of reasoning in classical ALC.

[1]  Umberto Straccia,et al.  On the Failure of the Finite Model Property in some Fuzzy Description Logics , 2010, Fuzzy Sets Syst..

[2]  Rafael Peñaloza,et al.  The Complexity of Lattice-Based Fuzzy Description Logics , 2012, Journal on Data Semantics.

[3]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy SHOIN with Fuzzy Nominals and General Concept Inclusions , 2006, URSW.

[4]  Stefan Borgwardt,et al.  Fuzzy DLs over Finite Lattices with Nominals , 2014, Description Logics.

[5]  Umberto Straccia,et al.  Finite Fuzzy Description Logics and Crisp Representations , 2010, URSW.

[6]  Umberto Straccia,et al.  Mixed Integer Programming, General Concept Inclusions and Fuzzy Description Logics , 2007, EUSFLAT Conf..

[7]  Umberto Straccia,et al.  Reasoning with the finitely many-valued Lukasiewicz fuzzy Description Logic SROIQ , 2011, Inf. Sci..

[8]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[9]  Rafael Peñaloza,et al.  Gödel FL_0 with Greatest Fixed-Point Semantics , 2014, Description Logics.

[10]  G. Stamou,et al.  Reasoning with Very Expressive Fuzzy Description Logics , 2007, J. Artif. Intell. Res..

[11]  Umberto Straccia,et al.  Fuzzy description logics under Gödel semantics , 2009, Int. J. Approx. Reason..

[12]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[13]  Carsten Lutz,et al.  Description Logics with Concrete Domains-A Survey , 2002, Advances in Modal Logic.

[14]  Bernhard Hollunder Consistency checking reduced to satisfiability of concepts in terminological systems , 2005, Annals of Mathematics and Artificial Intelligence.

[15]  Rafael Peñaloza,et al.  Are fuzzy description logics with general concept inclusion axioms decidable? , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[16]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[17]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[18]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[19]  Rafael Peñaloza,et al.  Undecidability of Fuzzy Description Logics , 2012, KR.

[20]  Umberto Straccia,et al.  Description Logics over Lattices , 2006, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  Rafael Peñaloza,et al.  Consistency reasoning in lattice-based fuzzy Description Logics , 2014, Int. J. Approx. Reason..

[22]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[23]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[24]  Fernando Bobillo,et al.  A Crisp Representation for Fuzzy with Fuzzy Nominals and General Concept Inclusions. , 2008 .

[25]  Umberto Straccia,et al.  Reasoning within Fuzzy Description Logics , 2011, J. Artif. Intell. Res..

[26]  Rafael Peñaloza,et al.  SI! Automata Can Show PSPACE Results for Description Logics , 2008, LATA.

[27]  Rafael Peñaloza,et al.  Gödel Description Logics with General Models , 2014, Description Logics.

[28]  Rafael Peñaloza,et al.  On the Undecidability of Fuzzy Description Logics with GCIs and Product T-norm , 2011, FroCoS.

[29]  R. Peñaloza,et al.  Gödel Description Logics: Decidability in the Absence of the Finitely-Valued Model Property , 2013 .

[30]  Petr Hájek,et al.  Making fuzzy description logic more general , 2005, Fuzzy Sets Syst..

[31]  Petr Hájek,et al.  On witnessed models in fuzzy logic , 2007, Math. Log. Q..

[32]  Umberto Straccia,et al.  Joining Gödel and Zadeh Fuzzy Logics in Fuzzy Description Logics , 2012, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[33]  Umberto Straccia,et al.  On the (un)decidability of fuzzy description logics under Łukasiewicz t-norm , 2013, Inf. Sci..

[34]  Umberto Straccia,et al.  A Fuzzy Description Logic with Product T-norm , 2007, 2007 IEEE International Fuzzy Systems Conference.

[35]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[36]  Dusan Guller On the Satisfiability and Validity Problems in the Propositional Gödel Logic , 2010, IJCCI.

[37]  Christian G. Fermüller,et al.  Handbook of Mathematical Fuzzy Logic - Volume 3 , 2015 .

[38]  Rafael Peñaloza,et al.  How Fuzzy Is My Fuzzy Description Logic? , 2012, IJCAR.