Protein production by auto-induction in high density shaking cultures.

[1]  W. Wood,et al.  Host specificity of DNA produced by Escherichia coli: bacterial mutations affecting the restriction and modification of DNA. , 1966, Journal of molecular biology.

[2]  C. Miller,et al.  S-ribosylhomocysteine cleavage enzyme from Escherichia coli. , 1968, The Journal of biological chemistry.

[3]  R. E. Huber,et al.  A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose. , 1976, Biochemistry.

[4]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[5]  F. Studier,et al.  Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. , 1986, Journal of molecular biology.

[6]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[7]  S W Lin,et al.  Vectors for selective expression of cloned DNAs by T7 RNA polymerase. , 1987, Gene.

[8]  J. Foster,et al.  Ch. 96: pH-Regulated Genes and Survival at Extreme pH , 1987 .

[9]  H. Bujard,et al.  Regulation of coliphage T3 and T7 RNA polymerases by the lac repressor-operator system. , 1989, Gene.

[10]  F. Studier,et al.  Use of T7 RNA polymerase to direct expression of cloned genes. , 1990, Methods in enzymology.

[11]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[12]  S. Roseman,et al.  The bacterial phosphoenolpyruvate: glycose phosphotransferase system. , 1990, Annual review of biochemistry.

[13]  F. Studier Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. , 1991, Journal of molecular biology.

[14]  C. Cagnon,et al.  A new family of sugar-inducible expression vectors for Escherichia coli. , 1991, Protein engineering.

[15]  F. Studier,et al.  Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with lac repressor. , 1991, Journal of molecular biology.

[16]  V. Ramakrishnan,et al.  Expression of chicken linker histones in E. coli: sources of problems and methods for overcoming some of the difficulties. , 1994, Protein expression and purification.

[17]  B. Fox,et al.  Lactose fed-batch overexpression of recombinant metalloproteins in Escherichia coli BL21 (DE3): process control yielding high levels of metal-incorporated, soluble protein. , 1995, Protein expression and purification.

[18]  D. Belin,et al.  Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter , 1995, Journal of bacteriology.

[19]  C. Eckerskorn,et al.  High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. , 1995, European journal of biochemistry.

[20]  E. Kawasaki,et al.  Regulation of sCD4-183 gene expression from phage-T7-based vectors in Escherichia coli. , 1995, Gene.

[21]  E. Newman,et al.  The Leucine\Lrp Regulon , 1996 .

[22]  B. Wanner Phosphorus assimilation and control of the phosphate regulon , 1996 .

[23]  T. Inada,et al.  Mechanism responsible for glucose–lactose diauxie in Escherichia coli: challenge to the cAMP model , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[24]  H. Holms,et al.  Flux analysis and control of the central metabolic pathways in Escherichia coli. , 1996, FEMS microbiology reviews.

[25]  F. Neidhardt,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems , 1996 .

[26]  W. Bode,et al.  Expression, Purification, Characterization, and X-Ray Analysis of Selenomethionine 215 Variant of Leukocyte Collagenase , 1997, Journal of protein chemistry.

[27]  P. Postma,et al.  cAMP receptor protein-cAMP plays a crucial role in glucose-lactose diauxie by activating the major glucose transporter gene in Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. Kawasaki,et al.  Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. , 1998, Gene.

[29]  M. Dreyfus,et al.  On the mechanism of inhibition of phage T7 RNA polymerase by lac repressor. , 1998, Journal of molecular biology.

[30]  Jae-Gu Pan,et al.  Acetate Metabolism in a pta Mutant ofEscherichia coli W3110: Importance of Maintaining Acetyl Coenzyme A Flux for Growth and Survival , 1999, Journal of bacteriology.

[31]  A. Sali,et al.  Structural genomics: beyond the Human Genome Project , 1999, Nature Genetics.

[32]  K. Matthews,et al.  Generation of an AraC-araBAD promoter-regulated T7 expression system. , 2000, Analytical biochemistry.

[33]  S. Busby,et al.  Regulation of Acetyl Coenzyme A Synthetase inEscherichia coli , 2000, Journal of bacteriology.

[34]  P. Postma,et al.  Glycerol-3-Phosphate-Induced Catabolite Repression in Escherichia coli , 2002, Journal of bacteriology.

[35]  Y. Chao,et al.  Stringent Regulation and High‐Level Expression of Heterologous Genes in Escherichiacoli Using T7 System Controllable by the araBAD Promoter , 2002, Biotechnology progress.

[36]  F. Studier,et al.  Structure of a yeast hypothetical protein selected by a structural genomics approach. , 2003, Acta crystallographica. Section D, Biological crystallography.

[37]  B. Mattiasson,et al.  Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer , 1992, Applied Microbiology and Biotechnology.

[38]  D. Fu,et al.  Thermodynamic Studies of the Mechanism of Metal Binding to the Escherichia coli Zinc Transporter YiiP* , 2004, Journal of Biological Chemistry.

[39]  F. Studier,et al.  Structure and mechanism of ADP‐ribose‐1″‐monophosphatase (Appr‐1″‐pase), a ubiquitous cellular processing enzyme , 2005, Protein science : a publication of the Protein Society.