3 Log-gamma order statistics and linear estimation of parameters

Publisher Summary This chapter discusses log-gamma order statistics and the linear estimation of parameters. By assuming that the shape parameter κ is known, the chapter discusses the best linear unbiased estimation of the location parameter and the scale parameter on complete and Type-II censored samples. It provides the necessary tables for complete and right-censored samples for sample sizes up to twenty five and κ = 0.5(0.5)2.0(1.0)4.0(2.0)12.0. This is made possible after determining the single and product moments of order statistics in terms of digamma and trigamma functions and then computing the means, variances, and covariance of order statistics. The chapter also considers a life-test data given by Lawless and illustrates the method of estimation.

[1]  S. Gupta,et al.  Order Statistics from the Gamma Distribution , 1960 .

[2]  Narayanaswamy Balakrishnan,et al.  Relations, Bounds and Approximations for Order Statistics , 1989 .

[3]  Saad T. Bakir,et al.  Bias correction for a generalized log-gamma regression model , 1987 .

[4]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[5]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[6]  E. Kay,et al.  Methods for statistical analysis of reliability and life data , 1974 .

[7]  A. Clifford Cohen,et al.  Parameter estimation in reliability and life span models , 1988 .

[8]  A. E. Sarhan,et al.  Contributions to order statistics , 1964 .

[9]  Narayanaswamy Balakrishnan,et al.  Order statistics from extreme value distribution, i: tables of means, variances and covariances , 1992 .

[10]  B. E. Schneider Algorithm AS 121: Trigamma Function , 1978 .

[11]  Narayanaswamy Balakrishnan,et al.  Order statistics from extreme value distribution, ii: best linear unbiased estimates and some other uses , 1992 .

[12]  J. Lawless Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .

[13]  E. H. Lloyd LEAST-SQUARES ESTIMATION OF LOCATION AND SCALE PARAMETERS USING ORDER STATISTICS , 1952 .

[14]  J. Lieblein,et al.  Table of the first moment of ranked extremes , 1957 .

[15]  R. Prentice A LOG GAMMA MODEL AND ITS MAXIMUM LIKELIHOOD ESTIMATION , 1974 .

[16]  J. Lieblein,et al.  Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings , 1956 .

[17]  T. J. DiCiccio Approximate inference for the generalized gamma distribution , 1987 .

[18]  Richard E. Barlow,et al.  Statistical Analysis of Reliability and Life Testing Models , 1975 .

[19]  John S. White The Moments of Log-Weibull Order Statistics , 1969 .