Greedy Routing in Tree-Decomposed Graphs

We propose a new perspective on the small world phenomenon by considering arbitrary graphs augmented according to probabilistic distributions guided by tree-decompositions of the graphs. We show that, for any n-node graph G of treewidth ≤ k, there exists a tree-decomposition-based distribution ${\mathcal D}$ such that greedy routing in the augmented graph $(G,{\mathcal D})$ performs in O(klog2n) expected number of steps. We also prove that if G has chordality ≤ k, then the tree-decomposition-based distribution ${\mathcal D}$ insures that greedy routing in $(G,{\mathcal D})$ performs in O((k+log n)log n) expected number of steps. In particular, for any n-node graph G of chordality O(log n) (e.g., chordal graphs), greedy routing in the augmented graph $(G,{\mathcal D})$ performs in O(log2n) expected number of steps.

[1]  David Gamarnik,et al.  The diameter of a long range percolation graph , 2002, SODA '02.

[2]  Pierre Fraigniaud,et al.  Eclecticism shrinks even small worlds , 2004, PODC '04.

[3]  Charles U. Martel,et al.  Analyzing and characterizing small-world graphs , 2005, SODA '05.

[4]  M. A. Muñoz,et al.  Journal of Statistical Mechanics: An IOP and SISSA journal Theory and Experiment Detecting network communities: a new systematic and efficient algorithm , 2004 .

[5]  D. Watts,et al.  An Experimental Study of Search in Global Social Networks , 2003, Science.

[6]  M E J Newman,et al.  Identity and Search in Social Networks , 2002, Science.

[7]  Jon M. Kleinberg,et al.  The small-world phenomenon: an algorithmic perspective , 2000, STOC '00.

[8]  Sharon L. Milgram,et al.  The Small World Problem , 1967 .

[9]  Lali Barrière,et al.  Efficient Routing in Networks with Long Range Contacts , 2001, DISC.

[10]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[11]  Friedhelm Meyer auf der Heide,et al.  Algorithms — ESA 2001 , 2001, Lecture Notes in Computer Science.

[12]  James Aspnes,et al.  Fault-tolerant routing in peer-to-peer systems , 2002, PODC '02.

[13]  Filippo Menczer,et al.  Growing and navigating the small world Web by local content , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Aldenderfer,et al.  Cluster Analysis. Sage University Paper Series On Quantitative Applications in the Social Sciences 07-044 , 1984 .

[15]  Dieter Kratsch,et al.  On treewidth approximations , 2004, Discret. Appl. Math..

[16]  Jon M. Kleinberg,et al.  Small-World Phenomena and the Dynamics of Information , 2001, NIPS.

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[19]  Igor Prívara,et al.  Mathematical Foundations of Computer Science 1997 , 1997, Lecture Notes in Computer Science.

[20]  David Peleg,et al.  Approximate Distance Labeling Schemes , 2001, ESA.

[21]  Pierre Fraigniaud,et al.  Routing in Trees , 2001, ICALP.

[22]  Hans L. Bodlaender,et al.  Treewidth: Algorithmic Techniques and Results , 1997, MFCS.

[23]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[24]  Dimitrios M. Thilikos,et al.  Treewidth for Graphs with Small Chordality , 1997, Discret. Appl. Math..

[25]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[26]  Charles U. Martel,et al.  Analyzing Kleinberg's (and other) small-world Models , 2004, PODC '04.

[27]  Brian Everitt,et al.  Cluster analysis , 1974 .

[28]  M. Aldenderfer Cluster Analysis , 1984 .

[29]  Pierre Fraigniaud,et al.  Lower Bounds for Oblivious Single-Packet End-to-End Communication , 2003, DISC.

[30]  Lada A. Adamic,et al.  How to search a social network , 2005, Soc. Networks.

[31]  Bruno Courcelle,et al.  An algebraic theory of graph reduction , 1993, JACM.

[32]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[33]  Moni Naor,et al.  Know thy neighbor's neighbor: the power of lookahead in randomized P2P networks , 2004, STOC '04.

[34]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[35]  Graham K. Rand,et al.  Quantitative Applications in the Social Sciences , 1983 .

[36]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, Frontsize, and Shortest Elimination Tree , 1995, J. Algorithms.

[37]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  Jon M. Kleinberg,et al.  Navigation in a small world , 2000, Nature.