Adaptive optics for high-resolution imaging

Adaptive optics (AO) is a technique that corrects for optical aberrations. It was originally proposed to correct for the blurring effect of atmospheric turbulence on images in ground-based telescopes and was instrumental in the work that resulted in the Nobel prize-winning discovery of a supermassive compact object at the centre of our galaxy. When AO is used to correct for the eye’s imperfect optics, retinal changes at the cellular level can be detected, allowing us to study the operation of the visual system and to assess ocular health in the microscopic domain. By correcting for sample-induced blur in microscopy, AO has pushed the boundaries of imaging in thick tissue specimens, such as when observing neuronal processes in the brain. In this primer, we focus on the application of AO for high-resolution imaging in astronomy, vision science and microscopy. We begin with an overview of the general principles of AO and its main components, which include methods to measure the aberrations, devices for aberration correction, and how these components are linked in operation. We present results and applications from each field along with reproducibility considerations and limitations. Finally, we discuss future directions. This Primer provides an overview of the general principles of adaptive optics and explores the different ways in which adaptive optics can correct optical aberrations for high-resolution imaging in the fields of astronomy, vision science and microscopy.

[1]  Phillip Bedggood,et al.  Direct visualization and characterization of erythrocyte flow in human retinal capillaries , 2012, Biomedical optics express.

[2]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[3]  Christophe Verinaud,et al.  On the nature of the measurements provided by a pyramid wave-front sensor , 2004 .

[4]  David Williams,et al.  Imaging Light Responses of Foveal Ganglion Cells in the Living Macaque Eye , 2014, The Journal of Neuroscience.

[5]  Bruce Macintosh,et al.  SIMULTANEOUS DETECTION OF WATER, METHANE, AND CARBON MONOXIDE IN THE ATMOSPHERE OF EXOPLANET HR 8799 b , 2015, 1503.03539.

[6]  Emily J Patterson,et al.  Adaptive optics imaging of inherited retinal diseases , 2017, British Journal of Ophthalmology.

[7]  Na Ji,et al.  Multiplexed aberration measurement for deep tissue imaging in vivo , 2014, Nature Methods.

[8]  Andrew W. Serio,et al.  First light of the Gemini Planet Imager , 2014, Proceedings of the National Academy of Sciences.

[9]  Noriaki Miura,et al.  Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing , 2020, Journal of biomedical optics.

[10]  Julien Lozi,et al.  MagAO-X: project status and first laboratory results , 2018, Astronomical Telescopes + Instrumentation.

[11]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[12]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[13]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[14]  Xiangjun Xin,et al.  Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links. , 2019, Applied optics.

[15]  A. Roorda,et al.  Adaptive optics ophthalmoscopy. , 2015, Annual review of vision science.

[16]  Stephen A Burns,et al.  Imaging Glaucomatous Damage Across the Temporal Raphe. , 2015, Investigative ophthalmology & visual science.

[17]  Julien H. Girard,et al.  Near-infrared scattered light properties of the HR 4796 A dust ring. A measured scattering phase function from 13.6° to 166.6° , 2017, 1701.00750.

[18]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[19]  Martin J. Booth,et al.  Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. , 2016, Optics express.

[20]  Zhuolin Liu,et al.  Adaptive optics optical coherence tomography at 1 MHz. , 2014, Biomedical optics express.

[21]  Eric Betzig,et al.  Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. , 2011, Optics letters.

[22]  Toco Y P Chui,et al.  Imaging Foveal Microvasculature: Optical Coherence Tomography Angiography Versus Adaptive Optics Scanning Light Ophthalmoscope Fluorescein Angiography , 2016, Investigative ophthalmology & visual science.

[23]  Lothar Noethe,et al.  Active Optics: I. A System for Optimizing the Optical Quality and Reducing the Costs of Large Telescopes , 1987 .

[24]  Austin Roorda,et al.  Human foveal cone photoreceptor topography and its dependence on eye length , 2019, bioRxiv.

[25]  Robert Q. Fugate,et al.  The Starfire Optical Range 3.5-m Adaptive Optical Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[26]  Jessica R. Lu,et al.  The First Laser Guide Star Adaptive Optics Observations of the Galactic Center: Sgr A*’s Infrared Color and the Extended Red Emission in its Vicinity , 2005, astro-ph/0508664.

[27]  Vanessa P. Bailey,et al.  The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates under Conservative Assumptions , 2018, The Astronomical Journal.

[28]  Warren Skidmore,et al.  The Thirty Meter Telescope International Observatory facilitating transformative astrophysical science , 2017, 1806.02481.

[29]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[30]  Tiffany Meshkat,et al.  HD 106906 b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK , 2013, 1312.1265.

[31]  Rafael Millan-Gabet,et al.  Overview and status of the Giant Magellan Telescope project , 2018, Astronomical Telescopes + Instrumentation.

[32]  Ian Munro,et al.  Benefit of higher closed-loop bandwidths in ocular adaptive optics. , 2003, Optics express.

[33]  Mayank Goswami,et al.  Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina. , 2015, Biomedical optics express.

[34]  Malcolm Smith,et al.  NFIRAOS adaptive optics for the Thirty Meter Telescope , 2018, Astronomical Telescopes + Instrumentation.

[35]  Norbert Hubin,et al.  SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month , 2005 .

[36]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[37]  C.Dumas,et al.  SINFONI in the Galactic Center: young stars and IR flares in the central light month , 2005 .

[38]  D. Fantinel,et al.  Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70 , 2018, Astronomy & Astrophysics.

[39]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  Eugene W. Myers,et al.  Practical sensorless aberration estimation for 3D microscopy with deep learning. , 2020, Optics express.

[41]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[42]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[43]  Takashi R Sato,et al.  Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex , 2011, Proceedings of the National Academy of Sciences.

[44]  Peter L. Wizinowich,et al.  Upgrading the Keck AO wavefront controllers , 2008, Astronomical Telescopes + Instrumentation.

[45]  Mette Owner-Petersen,et al.  Dual-conjugate adaptive optics for wide-field high-resolution retinal imaging. , 2009, Optics express.

[46]  T. Wilson,et al.  Adaptive aberration correction in a confocal microscope , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  F. Rossant,et al.  Adaptive optics ophthalmoscopy: Application to age-related macular degeneration and vascular diseases , 2018, Progress in Retinal and Eye Research.

[48]  C. Leung,et al.  Adaptive optics two-photon microscopy enables near-diffraction-limited and functional retinal imaging in vivo , 2020, Light: Science & Applications.

[49]  R. Ragazzoni,et al.  Sensitivity of a pyramidic Wave Front sensor in closed loop Adaptive Optics , 1999 .

[50]  J. Schallek,et al.  Label free measurement of retinal blood cell flux, velocity, hematocrit and capillary width in the living mouse eye. , 2016, Biomedical optics express.

[51]  A. Boccaletti,et al.  Interpreting the photometry and spectroscopy of directly imaged planets: a new atmospheric model applied to β Pictoris b and SPHERE observations , 2015, 1504.04876.

[52]  Jordan R. Myers,et al.  Ultra-High Resolution 3D Imaging of Whole Cells , 2016, Cell.

[53]  K. Takayama,et al.  High-Resolution Imaging of the Retinal Nerve Fiber Layer in Normal Eyes Using Adaptive Optics Scanning Laser Ophthalmoscopy , 2012, PloS one.

[54]  P. Dedecker,et al.  An introduction to optical super-resolution microscopy for the adventurous biologist , 2018, Methods and applications in fluorescence.

[55]  C. Curcio,et al.  Retinal Pigment Epithelium Degeneration Associated With Subretinal Drusenoid Deposits in Age-Related Macular Degeneration. , 2017, American journal of ophthalmology.

[56]  Changhuei Yang,et al.  Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue , 2015, Nature Photonics.

[57]  Armando Riccardi,et al.  MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. I. DIRECT IMAGING IN THE FAR-RED OPTICAL WITH MagAO+VisAO AND IN THE NEAR-IR WITH NICI, , 2014, 1403.0560.

[58]  D. Agard,et al.  Computational adaptive optics for live three-dimensional biological imaging , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Michael Pircher,et al.  Lens based adaptive optics scanning laser ophthalmoscope. , 2012, Optics express.

[60]  Jessica R. Lu,et al.  Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits , 2008, 0808.2870.

[61]  F. Roddier Adaptive Optics in Astronomy: The impact of adaptive optics in astronomy , 1999 .

[62]  Lunar,et al.  1–2.4 μm Near-IR Spectrum of the Giant Planet β Pictoris b Obtained with the Gemini Planet Imager , 2017, 1703.00011.

[63]  Çağlar Ataman,et al.  Closed-loop multiconjugate adaptive optics for microscopy , 2020, BiOS.

[64]  Pierre-Yves Madec,et al.  Adaptive optics at the ESO ELT , 2018, Astronomical Telescopes + Instrumentation.

[65]  J. Conan,et al.  Wave-front temporal spectra in high-resolution imaging through turbulence , 1995 .

[66]  Hannah E. Smithson,et al.  Compact, modular and in-plane AOSLO for high-resolution retinal imaging , 2018, Biomedical optics express.

[67]  Ann E Elsner,et al.  In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. , 2014, Biomedical optics express.

[68]  D. Williams,et al.  Imaging translucent cell bodies in the living mouse retina without contrast agents. , 2015, Biomedical optics express.

[69]  Zengyi Li,et al.  Direct wavefront sensing enables functional imaging of infragranular axons and spines , 2019, Nature Methods.

[70]  Jennifer J. Hunter,et al.  Two-Photon Autofluorescence Imaging Reveals Cellular Structures Throughout the Retina of the Living Primate Eye , 2016, Investigative ophthalmology & visual science.

[71]  Sungsam Kang,et al.  Deep optical imaging within complex scattering media , 2020, Nature Reviews Physics.

[72]  Corina van de Pol,et al.  Normal‐eye Zernike coefficients and root‐mean‐square wavefront errors , 2006, Journal of cataract and refractive surgery.

[73]  Brian Patton,et al.  Aberrations and adaptive optics in super-resolution microscopy , 2015, Microscopy.

[74]  Anne-Marie Lagrange,et al.  NAOS-CONICA first on sky results in a variety of observing modes , 2003, SPIE Astronomical Telescopes + Instrumentation.

[75]  Graham P. Collins Making Stars to See Stars: DOD Adaptive Optics Work is Declassified , 1992 .

[76]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[77]  David Mouillet,et al.  NAOS, the first AO system of the VLT: on-sky performance , 2003, SPIE Astronomical Telescopes + Instrumentation.

[78]  Emmanuel Beaurepaire,et al.  Accuracy of correction in modal sensorless adaptive optics. , 2012, Optics express.

[79]  David R Williams,et al.  In vivo imaging of retinal pigment epithelium cells in age related macular degeneration. , 2013, Biomedical optics express.

[80]  Armando Riccardi,et al.  MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. II. 3–5 μm DIRECT IMAGING WITH MagAO+Clio, AND THE EMPIRICAL BOLOMETRIC LUMINOSITY OF A SELF-LUMINOUS GIANT PLANET , 2015, 1511.02894.

[81]  S. Esposito,et al.  DIFFRACTION-LIMITED VISIBLE LIGHT IMAGES OF ORION TRAPEZIUM CLUSTER WITH THE MAGELLAN ADAPTIVE SECONDARY ADAPTIVE OPTICS SYSTEM (MagAO) , 2013, 1308.4155.

[82]  D. Williams,et al.  Monochromatic aberrations of the human eye in a large population. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[83]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[84]  Byron Engler,et al.  Wavefront sensing with prisms for astronomical imaging with adaptive optics , 2017, 2017 International Conference on Image and Vision Computing New Zealand (IVCNZ).

[85]  Jennifer J. Hunter,et al.  Vision science and adaptive optics, the state of the field , 2017, Vision Research.

[86]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[87]  Stephen A Boppart,et al.  Automated sensorless single-shot closed-loop adaptive optics microscopy with feedback from computational adaptive optics. , 2019, Optics express.

[88]  S. Rabien,et al.  Detection of the gravitational redshift in the orbit of the star S2 near the Galactic centre massive black hole , 2018, Astronomy & Astrophysics.

[89]  Francois Rigaut,et al.  Multiconjugate Adaptive Optics for Astronomy , 2018, Annual Review of Astronomy and Astrophysics.

[90]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[91]  A. Elsner,et al.  Adaptive optics imaging of the human retina , 2019, Progress in Retinal and Eye Research.

[92]  Na Ji Adaptive optical fluorescence microscopy , 2017, Nature Methods.

[93]  Min Gu,et al.  Direct determination of aberration functions in microscopy by an artificial neural network. , 2020, Optics express.

[94]  R. Zawadzki,et al.  Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens. , 2015, Optics express.

[95]  R. Tyson,et al.  Adaptive optics and ground-to-space laser communications. , 1996, Applied optics.

[96]  S. Gezari,et al.  Adaptive Optics Near-Infrared Spectroscopy of the Sagittarius A* Cluster , 2002, astro-ph/0205186.

[97]  Brian Patton,et al.  Adaptive optics correction of specimen-induced aberrations in single-molecule switching microscopy , 2015 .

[98]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[99]  Michael Pircher,et al.  Influence of wave-front sampling in adaptive optics retinal imaging. , 2017, Biomedical optics express.

[100]  Olivier Guyon,et al.  Ground-based adaptive optics coronagraphic performance under closed-loop predictive control , 2017, 1712.07189.

[101]  Julien H. Girard,et al.  High angular resolution detection of β Pictoris b at 2.18 μm , 2011 .

[102]  Sandipan Mishra,et al.  Comparison of control algorithms for a MEMS-based adaptive optics scanning laser ophthalmoscope , 2009, 2009 American Control Conference.

[103]  J. Milli,et al.  Wind-driven halo in high-contrast images , 2020 .

[104]  F. Roddier,et al.  One-dimensional spectra of turbulence-induced Zernike aberrations: time-delay and isoplanicity error in partial adaptive compensation , 1993 .

[105]  Andrew Serio,et al.  The Gemini Planet Imager: First Light , 2014, 1403.7520.

[106]  Omer P. Kocaoglu,et al.  A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future , 2016, Investigative ophthalmology & visual science.

[107]  Vasudevan Lakshminarayanan,et al.  Zernike polynomials: a guide , 2011 .

[108]  Hae Won Jung,et al.  Revealing How Color Vision Phenotype and Genotype Manifest in Individual Cone Cells , 2021, Investigative ophthalmology & visual science.

[109]  Jungtae Rha,et al.  Adaptive optics flood-illumination camera for high speed retinal imaging. , 2003, Optics express.

[110]  D. Burns,et al.  Use of Intracavity Adaptive Optics in Solid-State Lasers Operation at 1 µm , 2005 .

[111]  Omer P. Kocaoglu,et al.  In-the-plane design of an off-axis ophthalmic adaptive optics system using toroidal mirrors. , 2013, Biomedical optics express.

[112]  Torben Andersen,et al.  Image-based wavefront sensing for astronomy using neural networks , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.

[113]  Jianfei Liu,et al.  Combining multimodal adaptive optics imaging and angiography improves visualization of human eyes with cellular-level resolution , 2018, Communications Biology.

[114]  Austin Roorda,et al.  Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[115]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[116]  Phillip Bedggood,et al.  Mapping flow velocity in the human retinal capillary network with pixel intensity cross correlation , 2019, PloS one.

[117]  O. Guyon Extreme Adaptive Optics , 2018, Annual Review of Astronomy and Astrophysics.

[118]  P. Kner,et al.  Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics , 2021, Nature Communications.

[119]  Justin Fletcher,et al.  Machine learning for quality assessment of ground-based optical images of satellites , 2020 .

[120]  Vasudevan Lakshminarayanan,et al.  Zernike polynomials: a guide , 2011 .

[121]  C. Dainty,et al.  Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors. , 2008, Applied optics.

[122]  Martin J. Booth,et al.  Adaptive optical microscopy: the ongoing quest for a perfect image , 2014, Light: Science & Applications.

[123]  Chao He,et al.  Vectorial adaptive optics: correction of polarization and phase , 2020, BiOS.

[124]  A. Dubra,et al.  In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. , 2013, Biomedical optics express.

[125]  Michael Pircher,et al.  Increasing the field of view of adaptive optics scanning laser ophthalmoscopy. , 2017, Biomedical optics express.

[126]  A. Ramaprakash,et al.  Laser tomography adaptive optics: a performance study. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[127]  A. Dubra,et al.  Multi-layer Shack-Hartmann wavefront sensing in the point source regime. , 2020, Biomedical optics express.

[128]  Shane Jacobson,et al.  Adaptive optics with an infrared pyramid wavefront sensor at Keck , 2020, Journal of Astronomical Telescopes, Instruments, and Systems.

[129]  Simone Esposito,et al.  Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. , 2006, Optics express.

[130]  Julien H. Girard,et al.  DISCOVERY OF A PROBABLE 4–5 JUPITER-MASS EXOPLANET TO HD 95086 BY DIRECT IMAGING , 2013, 1305.7428.

[131]  Fulvio Melia,et al.  Electron Acceleration around the Supermassive Black Hole at the Galactic Center , 2001, astro-ph/0106162.

[132]  M. Chun,et al.  Keck Planet Imager and Characterizer: concept and phased implementation , 2016, Astronomical Telescopes + Instrumentation.

[133]  C. U. Keller,et al.  Two accreting protoplanets around the young star PDS 70 , 2019, Nature Astronomy.

[134]  Hans Zappe,et al.  Optofluidic adaptive optics. , 2018, Applied optics.

[135]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[136]  Hervé Rigneault,et al.  Wavefront sensing with a thin diffuser. , 2017, Optics letters.

[137]  Serge Meimon,et al.  High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability. , 2018, Applied optics.

[138]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[139]  D. Milkie,et al.  Rapid Adaptive Optical Recovery of Optimal Resolution over LargeVolumes , 2014, Nature Methods.

[140]  G. Lerosey,et al.  Controlling waves in space and time for imaging and focusing in complex media , 2012, Nature Photonics.

[141]  David R. Williams,et al.  Optical properties of the mouse eye , 2011, Biomedical optics express.

[142]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[143]  Jun Tanida,et al.  Deep learning wavefront sensing. , 2019, Optics express.

[144]  George Z. Angeli,et al.  An overview and status of GMT active and adaptive optics , 2018, Astronomical Telescopes + Instrumentation.

[145]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[146]  Robert A. Gonsalves,et al.  Phase Retrieval And Diversity In Adaptive Optics , 1982 .

[147]  Jason R. Swedlow,et al.  Full volume super-resolution imaging of thick mitotic spindle using 3D AO STED microscope. , 2019, Biomedical optics express.

[148]  Na Ji,et al.  Thalamus provides layer 4 of primary visual cortex with orientation- and direction-tuned inputs , 2015, Nature Neuroscience.

[149]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[150]  M. Vorontsov,et al.  The principles of adaptive optics , 1985 .

[151]  S. Bernet,et al.  What spatial light modulators can do for optical microscopy , 2011 .

[152]  A. Boccaletti,et al.  A Giant Planet Imaged in the Disk of the Young Star β Pictoris , 2010, Science.

[153]  Serge Meimon,et al.  High temporal resolution aberrometry in a 50-eye population and implications for adaptive optics error budget. , 2017, Biomedical optics express.

[154]  Vanessa P. Bailey,et al.  DIRECTLY IMAGED L-T TRANSITION EXOPLANETS IN THE MID-INFRARED, , 2013, 1311.2085.

[155]  Martin J Booth,et al.  Direct wavefront sensing in adaptive optical microscopy using backscattered light. , 2013, Applied optics.

[156]  Sina Farsiu,et al.  RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. , 2019, Biomedical optics express.

[157]  R. Ragazzoni Pupil plane wavefront sensing with an oscillating prism , 1996 .

[158]  J M Schmitt,et al.  Turbulent nature of refractive-index variations in biological tissue. , 1996, Optics letters.

[159]  M. Kasper,et al.  Adaptive Optics for Astronomy , 2012, 1201.5741.

[160]  C. Campbell,et al.  Adaptive Optics in Vision Science , 2007 .

[161]  R. Zawadzki,et al.  Coherence-Gated Sensorless Adaptive Optics Multiphoton Retinal Imaging , 2016, Scientific Reports.

[162]  A. Dubis,et al.  Cellular imaging of inherited retinal diseases using adaptive optics , 2019, Eye.

[163]  Dmitry Savransky,et al.  Gemini Planet Imager Spectroscopy of the HR 8799 Planets c and d , 2014 .

[164]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[165]  A B Metha,et al.  Multiconjugate adaptive optics applied to an anatomically accurate human eye model. , 2006, Optics express.

[166]  Elliot M. Meyerowitz,et al.  Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms , 2018, Science.

[167]  Peter Kner,et al.  Phase diversity for three-dimensional imaging. , 2013, Journal of the Optical Society of America. A, Optics, image science, and vision.

[168]  Jerome Mertz,et al.  Field of view advantage of conjugate adaptive optics in microscopy applications. , 2015, Applied optics.

[169]  R. Harwerth,et al.  In Vivo Changes in Lamina Cribrosa Microarchitecture and Optic Nerve Head Structure in Early Experimental Glaucoma , 2014, PloS one.

[170]  A. Dubra,et al.  Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy , 2018, Translational vision science & technology.

[171]  Robert J Zawadzki,et al.  Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction. , 2008, Optics express.

[172]  D. S. Acton,et al.  First Light Adaptive Optics Images from the Keck II Telescope: A New Era of High Angular Resolution Imagery , 2000 .

[173]  Erik M. Johansson,et al.  First light with adaptive optics: the performance of the DKIST high-order adaptive optics , 2020, Astronomical Telescopes + Instrumentation.

[174]  Thierry Fusco,et al.  Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[175]  Dmitry Savransky,et al.  The Gemini Planet Imager Exoplanet Survey: Dynamical Mass of the Exoplanet β Pictoris b from Combined Direct Imaging and Astrometry , 2019, The Astronomical Journal.

[176]  Gerard Rousset,et al.  Comparison of centroid computation algorithms in a Shack–Hartmann sensor , 2006 .

[177]  Eric Betzig,et al.  Dynamic super-resolution structured illumination imaging in the living brain , 2019, Proceedings of the National Academy of Sciences.

[178]  Friedrich Wöger,et al.  A review of solar adaptive optics , 2016, Astronomical Telescopes + Instrumentation.

[179]  Brandon K. Harvey,et al.  Direct wavefront sensing for high-resolution in vivo imaging in scattering tissue , 2015, Nature Communications.

[180]  Phillip Bedggood,et al.  Characteristics of the human isoplanatic patch and implications for adaptive optics retinal imaging. , 2008, Journal of biomedical optics.

[181]  Dmitry Savransky,et al.  The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au , 2019, The Astronomical Journal.

[182]  Gianpietro Marchiori,et al.  ELT design status: the most powerful ground telescope , 2018, Astronomical Telescopes + Instrumentation.

[183]  C. Moser,et al.  Transscleral Optical Phase Imaging of the Human Retina , 2019, Nature photonics.

[184]  M. Booth,et al.  Active compensation of extrinsic polarization errors using adaptive optics. , 2019, Optics express.

[185]  A. Bradley,et al.  Statistical variation of aberration structure and image quality in a normal population of healthy eyes. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[186]  I. Iglesias Pyramid phase microscopy. , 2011, Optics letters.

[187]  Sapna A. Shroff,et al.  Phase-shift estimation in sinusoidally illuminated images for lateral superresolution. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[188]  Lisa A Poyneer,et al.  Scene-based Shack-Hartmann wave-front sensing: analysis and simulation. , 2003, Applied optics.

[189]  Dmitry Savransky,et al.  Dynamical Constraints on the HR 8799 Planets with GPI , 2018, The Astronomical Journal.

[190]  Michel Verhaegen,et al.  Wavefront sensorless adaptive optics OCT with the DONE algorithm for in vivo human retinal imaging [Invited]. , 2017, Biomedical optics express.

[191]  Sina Farsiu,et al.  Super-resolution retinal imaging using optically reassigned scanning laser ophthalmoscopy , 2019, Nature photonics.

[192]  R. Lenzen,et al.  The Stellar Cusp around the Supermassive Black Hole in the Galactic Center , 2003, astro-ph/0305423.

[193]  Martin J. Booth,et al.  Adaptive optics in laser processing , 2019, Light: Science & Applications.

[194]  J. Rittscher,et al.  Multi-scale sensorless adaptive optics: application to stimulated emission depletion microscopy , 2020, Optics express.

[195]  L. Thibos,et al.  Standards for reporting the optical aberrations of eyes. , 2002, Journal of refractive surgery.

[196]  Geunyoung Yoon,et al.  Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes. , 2007, Applied optics.

[197]  Ying Geng,et al.  Imaging light responses of retinal ganglion cells in the living mouse eye. , 2013, Journal of neurophysiology.

[198]  Jerome Mertz,et al.  Axial range of conjugate adaptive optics in two-photon microscopy. , 2015, Optics express.

[199]  Andrew Serio,et al.  Gemini South multi-conjugate adaptive optics (GeMS) laser guide star facility on-sky performance results , 2012, Other Conferences.

[200]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[201]  Jessica I. W. Morgan,et al.  In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. , 2009, Investigative ophthalmology & visual science.

[202]  Jennifer J. Hunter,et al.  Imaging Retinal Activity in the Living Eye. , 2019, Annual review of vision science.

[203]  Wesley R. Legant,et al.  Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution , 2014, Science.

[204]  Sina Farsiu,et al.  Deep learning based detection of cone photoreceptors with multimodal adaptive optics scanning light ophthalmoscope images of achromatopsia. , 2018, Biomedical optics express.

[205]  Toco Y P Chui,et al.  Variation of cone photoreceptor packing density with retinal eccentricity and age. , 2011, Investigative ophthalmology & visual science.

[206]  Jason J. Wang,et al.  Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager , 2015, Science.

[207]  R. Noll Zernike polynomials and atmospheric turbulence , 1976 .

[208]  P Artal,et al.  Dynamics of the eye's wave aberration. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[209]  T. Bek Fine structure in diabetic retinopathy lesions as observed by adaptive optics imaging. A qualitative study , 2014, Acta ophthalmologica.

[210]  Jennifer J. Hunter,et al.  Imaging individual neurons in the retinal ganglion cell layer of the living eye , 2017, Proceedings of the National Academy of Sciences.

[211]  Kazuhiro Kurokawa,et al.  Cellular Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography. , 2020, Annual review of vision science.

[212]  Raphaël Turcotte,et al.  Adaptive optical versus spherical aberration corrections for in vivo brain imaging. , 2017, Biomedical optics express.