A novel fabrication process to realise a valveless micropump on a flexible substrate

This paper reports, for the first time, the design, fabrication and testing of a valveless micropump, entirely screen printed onto a flexible polyimide (Kapton) substrate by using sacrificial, polymer-structural and piezoelectric layers. The sacrificial layer, used to achieve a pump chamber and inlet/outlet channels, is thermally removed, analogous to a standard MEMS sacrificial process. Applying a sinusoidal AC voltage to the piezoelectric layer drives a flexible membrane which pumps liquid through the chamber. A maximum flow rate of 67 μL/min can be achieved using a drive frequency of 600 kHz.

[1]  G. Whitesides,et al.  Paper-based piezoresistive MEMS force sensors , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[2]  Steve Beeby,et al.  Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications , 2013 .

[3]  Steve Beeby,et al.  A screen printable sacrificial fabrication process to realise a cantilever on fabric using a piezoelectric layer to detect motion for wearable applications , 2013 .

[4]  Klaus Hofmann,et al.  A micromachined electrohydrodynamic (EHD) pump , 1991 .

[5]  Ok Chan Jeong,et al.  Peristaltic PDMS Pump with Perfect Dynamic Valves for Both Gas and Liquid , 2006, 19th IEEE International Conference on Micro Electro Mechanical Systems.

[6]  Nam-Trung Nguyen,et al.  MEMS-Micropumps: A Review , 2002 .

[7]  M. Gijs,et al.  A PMMA valveless micropump using electromagnetic actuation , 2005 .

[8]  M. Roukes,et al.  50 nm thick AlN film-based piezoelectric cantilevers for gravimetric detection , 2011 .

[9]  H. Wikle,et al.  The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting , 2008 .

[10]  Suresh V. Garimella,et al.  Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps , 2004 .

[11]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[12]  Takao Someya,et al.  Plastic complementary microelectromechanical switches , 2008 .

[13]  S. Bohm,et al.  A bi-directional electrochemically driven micro liquid dosing system with integrated sensor/actuator electrodes , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[14]  A. Lee,et al.  An AC magnetohydrodynamic micropump , 2000 .

[15]  Borut Pečar,et al.  Piezoelectric peristaltic micropump with a single actuator , 2014 .

[16]  Yih-Lin Cheng,et al.  Manufacture of three-dimensional valveless micropump , 2007 .

[17]  Albert P. Pisano,et al.  Surface micromachined piezoelectric accelerometers (PiXLs) , 2001 .

[18]  Juan G. Santiago,et al.  Fabrication and characterization of electroosmotic micropumps , 2001 .

[19]  A. Pisano,et al.  A fully surface-micromachined piezoelectric accelerometer , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[20]  D. J. Cockrell,et al.  A Review of Incompressible Diffuser Flow , 1963 .

[21]  Peter Woias,et al.  Micropumps: summarizing the first two decades , 2001, MOEMS-MEMS.

[22]  G. N. Patterson,et al.  Modern Diffuser Design , 1938 .

[23]  J. G. Smits Piezoelectric micropump with three valves working peristaltically , 1990 .

[24]  Steve Beeby,et al.  Screen-printed multilayer meander heater on polyester cotton , 2012 .

[25]  Kai Yang,et al.  A novel fabrication process for capacitive cantilever structures for smart fabric applications , 2012, 2012 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[26]  João Pedro Conde,et al.  Electrostatically actuated bilayer polyimide-based microresonators , 2007 .