Silicon technology tradeoffs for radio-frequency/mixed-signal (quote)systems-on-a-chip(quote)

Silicon technology has progressed over the last several years from a digitally oriented technology to one well suited for microwave and RF applications at a high level of integration. Technology scaling, both at the transistor and back-end metallization level, has driven this progress. CMOS technology is ideally suited for low-noise amplification and receiver applications, but the fundamental breakdown voltage is lower than that of equivalent Si/SiGe HBTs. High-quality passive devices are equally important, and improvements in metallization technology are resulting in higher quality inductors. This paper summarizes the silicon technology issues associated with RF "system-on-a-chip" applications.

[1]  M. Tiebout,et al.  Phase noise in a differential CMOS voltage-controlled oscillator for RF applications , 2000 .

[2]  T. Ishibashi Influence of electron velocity overshoot on collector transit times of HBTs , 1990 .

[3]  A. Schuppen,et al.  SiGe devices and circuits: where are advantages over III/V ? , 1995, GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium 17th Annual Technical Digest 1995.

[4]  Francis M. Rotella,et al.  Modeling and optimization of inductors with patterned ground shields for a high performance fully integrated switched tuning VCO , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[5]  F. M. Klaassen,et al.  Modelling of scaled-down MOS transistors , 1980 .

[6]  J.W. Slotboom,et al.  Ultra-low-temperature low-ohmic contacts for SOA applications , 1999, Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024).

[7]  Pasqualina M. Sarro,et al.  Substrate options and add-on process modules for monolithic RF silicon technology , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[8]  HongMo Wang A 9.8 GHz back-gate tuned VCO in 0.35 /spl mu/m CMOS , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[9]  A. Inoue,et al.  The maximum operating region in SiGe HBTs for RF power amplifiers , 2002, 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278).

[10]  M. Soyuer,et al.  Fully–monolithic 3V SiGe differential voltage–controlled oscillators for 5GHz and 17GHz wireless applications , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[11]  Lawrence E. Larson,et al.  A theory of high-frequency distortion in bipolar transistors , 2003 .

[12]  T. Lee,et al.  A 1.5 V, 1.5 GHz CMOS low noise amplifier , 1996 .

[13]  Xi Li,et al.  A comparison of CMOS and SiGe LNA's and mixers for wireless LAN application , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[14]  Lawrence E. Larson,et al.  Cdma Mobile Radio Design , 2000 .

[15]  Behzad Razavi,et al.  Design considerations for direct-conversion receivers , 1997 .

[16]  Alvin J. Joseph,et al.  Transistor noise in SiGe HBT RF technology , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[17]  D. Edelstein,et al.  RF circuit design aspects of spiral inductors on silicon , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[18]  Tatsuya Ohguro,et al.  High performance digital-analog mixed device on an Si substrate with resistivity beyond 1 k/spl Omega/ cm , 2000, International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138).

[19]  Han-Su Kim,et al.  A porous Si based novel isolation technology for mixed-signal integrated circuits , 2002, 2002 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.01CH37303).

[20]  Mau-Chung Frank Chang,et al.  High-frequency application of MOS compact models and their development for scalable RF model libraries , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[21]  K. F. Lee,et al.  Impact of distributed gate resistance on the performance of MOS devices , 1994 .

[22]  Heng-Ming Hsu,et al.  A 0.18 /spl mu/m foundry RF CMOS technology with 70 GHz F/sub t/ for single chip system solutions , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[23]  Alex Q. Huang,et al.  The future of bipolar power transistors , 2001 .

[24]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .

[25]  Carlo Samori,et al.  Spectrum folding and phase noise in LC tuned oscillators , 1998 .

[26]  Joachim N. Burghartz,et al.  Theory and design of an ultra-linear square-law approximated LDMOS power amplifier in class-AB operation , 2002 .

[27]  Chik Patrick Yue,et al.  On-chip RF isolation techniques , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[28]  Domine M. W. Leenaerts,et al.  A 2.4-GHz 0.18-/spl mu/m CMOS self-biased cascode power amplifier , 2003 .

[29]  Piet Wambacq,et al.  Distortion analysis of analog integrated circuits , 1998 .

[30]  B. J. Buck,et al.  GaAs MMICs for 5.2 GHz HIPERLAN , 1997 .

[31]  S. Jeng,et al.  Self-aligned SiGe NPN transistors with 285 GHz f/sub MAX/ and 207 GHz f/sub T/ in a manufacturable technology , 2002, IEEE Electron Device Letters.

[32]  Stephen A. Maas,et al.  Nonlinear microwave circuits , 1988 .

[33]  P. Kinget,et al.  A fully integrated 2.7 V 0.35 /spl mu/m CMOS VCO for 5 GHz wireless applications , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[34]  M. Vaidyanathan,et al.  Extrapolated f/sub max/ of heterojunction bipolar transistors , 1999 .

[35]  A. Chatterjee Analog integration in a 0.35μm Cu metal pitch, 0.1μm gate length, low-power digital CMOS technology , 2001 .

[36]  Didier Belot,et al.  A Bluetooth radio in 0.18 μm CMOS , 2002 .

[37]  H. Shichijo,et al.  Analog integration in a 0.35 /spl mu/m Cu metal pitch, 0.1 /spl mu/m gate length, low-power digital CMOS technology , 2001, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).

[38]  Keng Leong Fong High-frequency analysis of linearity improvement technique of common-emitter transconductance stage using a low-frequency-trap network , 2000, IEEE Journal of Solid-State Circuits.

[39]  Timo Rahkonen,et al.  The effects of source impedance on the linearity of BTJ common-emitter amplifiers , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[40]  H. Samavati,et al.  Fractal capacitors , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[41]  S. Jansen,et al.  Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully-integrated tank and tuning circuits , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[42]  V. Aparin,et al.  Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[43]  K. Jenkins,et al.  Integrated RF components in a SiGe bipolar technology , 1997 .

[44]  A. Hajimiri,et al.  Capacity limits and matching properties of lateral flux integrated capacitors , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[45]  Joachim N. Burghartz Spiral inductors on silicon—status and trends (invited article) , 1998 .

[46]  J. Raskin,et al.  Accurate SOI MOSFET characterization at microwave frequencies for device performance optimization and analog modeling , 1998 .

[47]  Lawrence E. Larson,et al.  Bipolar transistor epilayer design using the MAIDS mixed-level simulator , 1999 .

[48]  Tom K. Johansen,et al.  Optimization of SiGe VCOs for Wireless Applications , .

[49]  M. Soyuer,et al.  A fully-monolithic SiGe differential voltage-controlled oscillator for 5 GHz wireless applications , 2000, 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium Digest of Papers (Cat. No.00CH37096).

[50]  Ralph S. Carson Radio Communications Concepts: Analog , 1990 .

[51]  Gabor C. Temes,et al.  Introduction to Circuit Synthesis and Design , 1977 .

[52]  David L. Pulfrey,et al.  Extrapolated of Heterojunction Bipolar Transistors , 1999 .

[53]  R.H. Rasshofer,et al.  Long-term stability of passive millimeterwave circuits on high-resistivity silicon substrates , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[54]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[55]  S. P. Voinigescu,et al.  An assessment of the state-of-the-art 0.5 /spl mu/m bulk CMOS technology for RF applications , 1995, Proceedings of International Electron Devices Meeting.

[56]  M. W. Oliphant,et al.  An introduction to GSM , 1995 .

[57]  D. Leeson A simple model of feedback oscillator noise spectrum , 1966 .

[58]  Didier Belot,et al.  Substrate parasitic extraction for RF integrated circuits , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[59]  A. Abidi,et al.  Large suspended inductors on silicon and their use in a 2- mu m CMOS RF amplifier , 1993, IEEE Electron Device Letters.

[60]  John D. Cressler,et al.  RF linearity characteristics of SiGe HBTs , 2001 .

[61]  J. Cressler SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications , 1998 .

[62]  Lawrence E. Larson Integrated circuit technology options for RFICs-present status and future directions , 1998 .

[63]  G. Knoblinger,et al.  Modeling the gate-related high-frequency and noise characteristics of deep-submicron MOSFETs , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[64]  Lawrence E. Larson,et al.  Integrated circuit technology options for RFIC's-present status and future directions , 1997, Proceedings of CICC 97 - Custom Integrated Circuits Conference.

[65]  Joachim N. Burghartz Status and Trends in Silicon RF Technology , 1999, 29th European Solid-State Device Research Conference.

[66]  R. Jos Future developments and technology options in cellular phone power amplifiers: from power amplifier to integrated RF front-end module , 2000, Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.00CH37124).

[67]  K.T. Ng,et al.  IC-Compatible Two-level Bulk Micromachining for RF Silicon Technology , 2000, 30th European Solid-State Device Research Conference.

[68]  Y. Tsividis Operation and modeling of the MOS transistor , 1987 .

[69]  Jianping Pan,et al.  Design of a low-cost integrated 0.25 /spl mu/m CMOS Bluetooth SOC in 16.5 mm/sup 2/ silicon area , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[70]  Giuseppe La Rosa,et al.  A review of hot-carrier degradation mechanisms in MOSFETs , 1996 .

[71]  HongMo Wang A 9.8 GHz back-gate tuned VCO in 0.35 /spl mu/m CMOS , 1999 .

[72]  Lawrence E. Larson,et al.  Microwave transformers, inductors and transmission lines implemented in an Si/SiGe HBT process , 2001 .

[73]  J. J. Lee,et al.  SOI CMOS with high-performance passive components for analog, RF, and mixed signal design , 1998, 1998 IEEE International SOI Conference Proceedings (Cat No.98CH36199).

[74]  Donald Y. C. Lie,et al.  Phase noise analysis of fully-integrated digitally-tuned wideband Si/SiGe BiCMOS VCOs , 2002, Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting.

[75]  J. Cressler,et al.  Si/SiGe epitaxial-base transistors. I. Materials, physics, and circuits , 1995 .

[76]  Paul Cooper Davis Merits and requirements of a few RF architectures , 1999, Proceedings of the 1999 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.99CH37024).

[77]  Mark J. W. Rodwell,et al.  Submicron scaling of HBTs , 2001 .

[78]  Hei Wong Drain breakdown in submicron MOSFETs: a review , 2000 .

[79]  Lawrence E. Larson,et al.  Noise power optimization of monolithic CMOS VCOs , 1999, 1999 IEEE Radio Frequency Integrated Circuits Symposium (Cat No.99CH37001).

[80]  A. Ziel Noise in solid state devices and circuits , 1986 .

[81]  L.E. Larson,et al.  A deep-submicrometer microwave/digital CMOS/SOS technology , 1991, IEEE Electron Device Letters.

[82]  Herbert Kroemer,et al.  Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region , 1985 .

[83]  A.L. Lacaita,et al.  A fully-integrated low-power low-noise 2.6-GHz bipolar VCO for wireless applications , 2001, IEEE Microwave and Wireless Components Letters.

[84]  John D. Cressler,et al.  A unified approach to RF and microwave noise parameter modeling in bipolar transistors , 2001 .

[85]  J. Scholvin,et al.  A Faraday cage isolation structure for substrate crosstalk suppression , 2001, IEEE Microwave and Wireless Components Letters.

[86]  M. J. Deen,et al.  MOSFET modeling for low noise, RF circuit design , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[87]  A. Wagemans,et al.  A 3.5 mW 2.5 GHz diversity receiver and a 1.2 mW 3.6 GHz VCO in silicon-on-anything , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[88]  A. Hajimiri,et al.  Design issues in CMOS differential LC oscillators , 1999, IEEE J. Solid State Circuits.

[89]  Lee-Sup Kim,et al.  Modeling of the distributed gate RC effect in MOSFET's , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..