Hox genes in hematopoiesis and leukemogenesis

[1]  J. Krosl,et al.  Sustained in vitro trigger of self-renewal divisions in Hoxb4hiPbx1(10) hematopoietic stem cells. , 2007, Experimental hematology.

[2]  G. Sauvageau,et al.  Near-maximal expansions of hematopoietic stem cells in culture using NUP98-HOX fusions. , 2007, Experimental hematology.

[3]  G. Jin,et al.  Trib1 and Evi1 cooperate with Hoxa and Meis1 in myeloid leukemogenesis. , 2007, Blood.

[4]  C. Lavau,et al.  Flt3 is dispensable to the Hoxa9/Meis1 leukemogenic cooperation. , 2007, Blood.

[5]  Wai Hung Tsang,et al.  Hoxb3 deficiency impairs B lymphopoiesis in mouse bone marrow. , 2007, Experimental hematology.

[6]  Daniel Chourrout,et al.  Genome Regulation by Polycomb and Trithorax Proteins , 2007, Cell.

[7]  J. Dick,et al.  A human colon cancer cell capable of initiating tumour growth in immunodeficient mice , 2007, Nature.

[8]  F. Speleman,et al.  Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRβ-HOXA rearrangement: a study of the Groupe Francophone de Cytogénétique Hématologique , 2007, Leukemia.

[9]  Giovanni Morrone,et al.  Enforced expression of NUP98-HOXA9 in human CD34(+) cells enhances stem cell proliferation. , 2006, Cancer research.

[10]  S. Fröhling,et al.  Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model , 2006, Proceedings of the National Academy of Sciences.

[11]  W. Hiddemann,et al.  Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. , 2006, Cancer cell.

[12]  M. Cleary,et al.  Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. , 2006, Cancer cell.

[13]  Yi Zhang,et al.  Leukaemic transformation by CALM–AF10 involves upregulation of Hoxa5 by hDOT1L , 2006, Nature Cell Biology.

[14]  T. Golub,et al.  Transformation from committed progenitor to leukaemia stem cell initiated by MLL–AF9 , 2006, Nature.

[15]  A. Wan,et al.  The Flt3 receptor tyrosine kinase collaborates with NUP98-HOX fusions in acute myeloid leukemia. , 2006, Blood.

[16]  David Bryder,et al.  Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. , 2006, The American journal of pathology.

[17]  C. Kimmel,et al.  Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face , 2006, Development.

[18]  J. Krosl,et al.  Molecular dissection of Meis1 reveals 2 domains required for leukemia induction and a key role for Hoxa gene activation. , 2006, Blood.

[19]  J. Esteve,et al.  Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. , 2006, Cancer research.

[20]  D. Grier,et al.  Analysis of HSC activity and compensatory Hox gene expression profile in Hoxb cluster mutant fetal liver cells. , 2006, Blood.

[21]  F. Speleman,et al.  HOXA cluster deregulation in T-ALL associated with both a TCRD-HOXA and a CALM-AF10 chromosomal translocation , 2006, Leukemia.

[22]  G. Wang,et al.  Persistent Transactivation by Meis1 Replaces Hox Function in Myeloid Leukemogenesis Models: Evidence for Co-Occupancy of Meis1-Pbx and Hox-Pbx Complexes on Promoters of Leukemia-Associated Genes , 2006, Molecular and Cellular Biology.

[23]  C. Niu,et al.  Trans-repressive effect of NUP98-PMX1 on PMX1-regulated c-FOS gene through recruitment of histone deacetylase 1 by FG repeats. , 2006, Cancer research.

[24]  B. Storer,et al.  Competing Interests: The authors , 2004 .

[25]  L. Zon,et al.  The caudal-related homeobox genes cdx1a and cdx4 act redundantly to regulate hox gene expression and the formation of putative hematopoietic stem cells during zebrafish embryogenesis. , 2006, Developmental biology.

[26]  L. Selleri,et al.  Hox cofactors in vertebrate development. , 2006, Developmental biology.

[27]  J. Hess,et al.  c-Myb is an essential downstream target for homeobox-mediated transformation of hematopoietic cells. , 2005, Blood.

[28]  T. Lister,et al.  Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia. , 2005, Blood.

[29]  I. Weissman,et al.  Loss of expression of the Hoxa-9 homeobox gene impairs the proliferation and repopulating ability of hematopoietic stem cells. , 2005, Blood.

[30]  E. Macintyre,et al.  CALM-AF10+ T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes , 2005, Leukemia.

[31]  D. Grier,et al.  Continuous MLL-ENL expression is necessary to establish a "Hox Code" and maintain immortalization of hematopoietic progenitor cells. , 2005, Cancer research.

[32]  Natalia Meani,et al.  Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+ AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem-cell maintenance. , 2005, Blood.

[33]  S. Akira,et al.  Selective activation of STAT5 unveils its role in stem cell self-renewal in normal and leukemic hematopoiesis , 2005, The Journal of experimental medicine.

[34]  G. Wang,et al.  Meis1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meis1 C-terminus. , 2005, Blood.

[35]  Takuro Nakamura NUP98 Fusion in Human Leukemia: Dysregulation of the Nuclear Pore and Homeodomain Proteins , 2005, International journal of hematology.

[36]  Zhenhua Zhang,et al.  NUP98-HOXD13 transgenic mice develop a highly penetrant, severe myelodysplastic syndrome that progresses to acute leukemia. , 2005, Blood.

[37]  Danila Coradini,et al.  Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. , 2005, Cancer research.

[38]  F. Sigaux,et al.  HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). , 2005, Blood.

[39]  T. Rabbitts,et al.  The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. , 2005, Seminars in cancer biology.

[40]  O. Witte,et al.  The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  N. Douet-Guilbert,et al.  The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia. , 2005, Anticancer research.

[42]  R. Humphries,et al.  Transplantable cell lines generated with NUP98–Hox fusion genes undergo leukemic progression by Meis1 independent of its binding to DNA , 2005, Leukemia.

[43]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[44]  M. L. Le Beau,et al.  HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. , 2005, Blood.

[45]  G. Sauvageau,et al.  Identification of cooperative genes for NUP98-HOXA9 in myeloid leukemogenesis using a mouse model. , 2005, Blood.

[46]  D. Grier,et al.  The pathophysiology of HOX genes and their role in cancer , 2005, The Journal of pathology.

[47]  A. Iwama,et al.  Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. , 2004, Immunity.

[48]  L. Zon,et al.  An Mll-Dependent Hox Program Drives Hematopoietic Progenitor Expansion , 2004, Current Biology.

[49]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[50]  K. Akashi,et al.  MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. , 2004, Cancer cell.

[51]  I. Weissman,et al.  JunB Deficiency Leads to a Myeloproliferative Disorder Arising from Hematopoietic Stem Cells , 2004, Cell.

[52]  J. Krosl,et al.  Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. , 2004, Blood.

[53]  P. Aplan,et al.  The Role of NUP98 Gene Fusions in Hematologic Malignancy , 2004, Leukemia & lymphoma.

[54]  J. Dick,et al.  Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity , 2004, Nature Immunology.

[55]  I. Matsumura,et al.  Roles for c-Myc in Self-renewal of Hematopoietic Stem Cells* , 2004, Journal of Biological Chemistry.

[56]  S. Karlsson,et al.  Hoxb4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. , 2004, Blood.

[57]  C. Kimmel,et al.  moz regulates Hox expression and pharyngeal segmental identity in zebrafish , 2004, Development.

[58]  Chi Wai So,et al.  Leukemic transformation of hematopoietic progenitors by MLL-GAS7 in the absence of Hoxa7 or Hoxa9. , 2004, Blood.

[59]  C. Huff,et al.  Characterization of clonogenic multiple myeloma cells. , 2004, Blood.

[60]  R. Humphries,et al.  Differential and Common Leukemogenic Potentials of Multiple NUP98-Hox Fusion Proteins Alone or with Meis1 , 2004, Molecular and Cellular Biology.

[61]  H. Drexler,et al.  Expression of HOX Genes in Acute Leukemia Cell Lines with and without MLL Translocations , 2004, Leukemia & lymphoma.

[62]  T. Naoe,et al.  Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. , 2004, Blood.

[63]  John H Kersey,et al.  Hoxa9 influences the phenotype but not the incidence of Mll-AF9 fusion gene leukemia. , 2004, Blood.

[64]  J. Harbott,et al.  Gene expression patterns associated with recurrent chromosomal translocations in acute lymphoblastic leukemia. , 2004, Blood.

[65]  N. Copeland,et al.  Hematopoietic, angiogenic and eye defects in Meis1 mutant animals , 2004, The EMBO journal.

[66]  Arndt Borkhardt,et al.  Hoxa9 and Meis1 Are Key Targets for MLL-ENL-Mediated Cellular Immortalization , 2004, Molecular and Cellular Biology.

[67]  A. Viale,et al.  The Oncogene Nup98-HOXA9 Induces Gene Transcription in Myeloid Cells* , 2004, Journal of Biological Chemistry.

[68]  I. Weissman,et al.  Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. , 2003, Genes & development.

[69]  C. Eaves,et al.  Different in vivo repopulating activities of purified hematopoietic stem cells before and after being stimulated to divide in vitro with the same kinetics. , 2003, Experimental hematology.

[70]  P. Romeo,et al.  Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein , 2003, Nature Medicine.

[71]  L. Zon,et al.  cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes , 2003, Nature.

[72]  M. Cleary,et al.  Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. , 2003, Genes & development.

[73]  Misao Ohki,et al.  Two distinct gene expression signatures in pediatric acute lymphoblastic leukemia with MLL rearrangements. , 2003, Cancer research.

[74]  W. Hiddemann,et al.  Molecular characterization of acute leukemias by use of microarray technology , 2003, Genes, chromosomes & cancer.

[75]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[76]  C. Buske,et al.  Induction of acute myeloid leukemia in mice by the human leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1. , 2003, Blood.

[77]  S. Karlsson,et al.  Reduced Proliferative Capacity of Hematopoietic Stem Cells Deficient in Hoxb3 and Hoxb4 , 2003, Molecular and Cellular Biology.

[78]  I. Weissman,et al.  A role for Wnt signalling in self-renewal of haematopoietic stem cells , 2003, Nature.

[79]  G. Sauvageau,et al.  Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells , 2003, Nature.

[80]  Irving L. Weissman,et al.  Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells , 2003, Nature.

[81]  J. Krosl,et al.  The competitive nature of HOXB4-transduced HSC is limited by PBX1: the generation of ultra-competitive stem cells retaining full differentiation potential. , 2003, Immunity.

[82]  T. Imamura,et al.  Frequent co‐expression of HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with MLL rearrangement , 2002, British journal of haematology.

[83]  B. Owens,et al.  HOX and Non‐HOX Homeobox Genes in Leukemic Hematopoiesis , 2002, Stem cells.

[84]  G. Sauvageau,et al.  Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. , 2002, Blood.

[85]  K. Calvo,et al.  Nup98-HoxA9 immortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meis1, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meis1 , 2002, Oncogene.

[86]  G. Sauvageau,et al.  HOXB4-Induced Expansion of Adult Hematopoietic Stem Cells Ex Vivo , 2002, Cell.

[87]  J. Downing,et al.  Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. , 2002, Cancer cell.

[88]  A. Baron,et al.  Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia , 2002, Leukemia.

[89]  R. Humphries,et al.  Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. , 2002, Experimental hematology.

[90]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[91]  U. Thorsteinsdóttir,et al.  marrow cells induces stem cell expansion gene in bone Hoxa 9 associated − Overexpression of the myeloid leukemia , 2001 .

[92]  DH Lam,et al.  NUP98 gene fusions in hematologic malignancies , 2001, Leukemia.

[93]  G. Sauvageau,et al.  HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. , 2001, Experimental hematology.

[94]  S. Schreiner,et al.  MLL-ENL causes a reversible and myc-dependent block of myelomonocytic cell differentiation. , 2001, Cancer research.

[95]  I. Weissman,et al.  The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. , 2001, Blood.

[96]  Michael R. Green,et al.  Expressing the human genome , 2001, Nature.

[97]  C. Croce,et al.  Upregulation of Meis1 and HoxA9 in acute lymphocytic leukemias with the t(4 : 11) abnormality , 2001, Oncogene.

[98]  U. Thorsteinsdóttir,et al.  NUP98–HOXA9 expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice , 2001, The EMBO journal.

[99]  D. Baker,et al.  Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation , 2001, Nature Immunology.

[100]  Unnur Thorsteinsdottir,et al.  Defining Roles for HOX and MEIS1 Genes in Induction of Acute Myeloid Leukemia , 2001, Molecular and Cellular Biology.

[101]  I. Bernstein,et al.  Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling , 2000, Nature Medicine.

[102]  C. Kappen Disruption of the homeobox gene Hoxb‐6 in mice results in increased numbers of early erythrocyte progenitors , 2000, American journal of hematology.

[103]  K. Takeshita,et al.  MEIS1 and HOXA7 genes in human acute myeloid leukemia. , 2000, Leukemia research.

[104]  I. Weissman,et al.  AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[105]  H. Suemori,et al.  Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. , 2000, Developmental biology.

[106]  L. Kömüves,et al.  Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias , 1999, Leukemia.

[107]  U. Thorsteinsdóttir,et al.  Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. , 1999, Blood.

[108]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[109]  J. Gasson,et al.  Characterization of HOX gene expression during myelopoiesis: role of HOX A5 in lineage commitment and maturation. , 1999, Blood.

[110]  R. Humphries,et al.  Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells , 1999, Leukemia.

[111]  T. Shimamoto,et al.  Hematopoietic progenitor cell abnormalities in Hoxc-8 null mutant mice. , 1999, The Journal of experimental zoology.

[112]  R. DePinho,et al.  The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus , 1999, Nature.

[113]  M. Cleary,et al.  CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity , 1999, Molecular and Cellular Biology.

[114]  D. Hogge,et al.  Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR-. , 1998, Blood.

[115]  D. Izon,et al.  Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. , 1998, Blood.

[116]  Unnur Thorsteinsdottir,et al.  Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b , 1998, The EMBO journal.

[117]  D. Duboule,et al.  Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. Moskow,et al.  AbdB-like Hox proteins stabilize DNA binding by the Meis1 homeodomain proteins , 1997, Molecular and cellular biology.

[119]  J. Dick,et al.  Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell , 1997, Nature Medicine.

[120]  G. Sauvageau,et al.  Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. , 1997, Blood.

[121]  M. Capecchi,et al.  Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions. , 1997, Developmental biology.

[122]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[123]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. , 1997, Immunity.

[124]  Mark J Alkema,et al.  The Polycomb-group homolog Bmi-1 is a regulator of murine Hox gene expression , 1996, Mechanisms of Development.

[125]  D. Duboule,et al.  Functional equivalence and rescue among group 11 Hox gene products in vertebral patterning. , 1996, Developmental biology.

[126]  Guy Sauvageau,et al.  The Role of HOX Homeobox Genes in Normal and Leukemic Hematopoiesis , 1996, Stem cells.

[127]  R. Mann The specificity of homeotic gene function , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[128]  K. Huebner,et al.  Meis1, a PBX1-related homeobox gene involved in myeloid leukemia in BXH-2 mice , 1995, Molecular and cellular biology.

[129]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. , 1995, Genes & development.

[130]  R. Behringer,et al.  Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. , 1995, Genes & development.

[131]  R. Behringer,et al.  Mutations in paralogous Hox genes result in overlapping homeotic transformations of the axial skeleton: evidence for unique and redundant function. , 1995, Developmental biology.

[132]  U. Testa,et al.  HOXB gene expression and function in differentiating purified hematopoietic progenitors. , 1995, Stem cells.

[133]  P. Low,et al.  Signal transduction between red cells and other blood cells , 1995 .

[134]  G. Sauvageau,et al.  Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[135]  C. Peschle,et al.  Key functional role and lineage-specific expression of selected HOXB genes in purified hematopoietic progenitor differentiation. , 1994, Blood.

[136]  B. Sun,et al.  The degree of variation in DNA sequence recognition among four Drosophila homeotic proteins. , 1994, The EMBO journal.

[137]  R. Krumlauf Hox genes in vertebrate development , 1994, Cell.

[138]  P. Thomas,et al.  Identification of homeobox genes expressed in human haemopoietic progenitor cells. , 1994, Gene.

[139]  W. Gehring,et al.  Homeodomain proteins. , 1994, Annual review of biochemistry.

[140]  F. M. Hack,et al.  Modulation of homeobox gene expression alters the phenotype of human hematopoietic cell lines. , 1992, The EMBO journal.

[141]  M. Levine,et al.  Divergent homeo box proteins recognize similar DNA sequences in Drosophila , 1988, Nature.

[142]  B. Barrell,et al.  Maintenance of functional equivalence during paralogous Hox gene evolution , 2022 .