Normally-Off GaN-on-Si MISFET Using PECVD SiON Gate Dielectric

We have developed a silicon oxynitride (SiON) deposition process using a plasma-enhanced chemical vapor deposition system for the gate dielectric of GaN-on-Si metal–insulator–semiconductor field-effect transistors (MISFETs). The optimized SiON film had a relative dielectric constant of 5.3 and a breakdown field of 12MV/cm. A normally-off GaN-on-Si MISFET fabricated with a 33-nm SiON gate dielectric exhibited a threshold voltage of ~2 V, an ON-resistance of <inline-formula> <tex-math notation="LaTeX">$7.85~\mathsf {m}\Omega \cdot \mathsf {cm}^{{\mathsf {2}}}$ </tex-math></inline-formula>, and a breakdown voltage of ~640 V at the OFF-state current density of <inline-formula> <tex-math notation="LaTeX">$1~\mu \text{A}$ </tex-math></inline-formula>/mm. The extracted interface trap density was <inline-formula> <tex-math notation="LaTeX">$\mathsf {1} \times \mathsf {10}^{{\mathsf {12}}}$ </tex-math></inline-formula> cm<inline-formula> <tex-math notation="LaTeX">$^{{\mathsf {-2}}}\cdot \mathsf {eV}^{\mathsf {-1}}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">${E}_{c}- {E}_{t}= \mathsf {0.442}$ </tex-math></inline-formula> eV, which resulted in negligible hysteresis and excellent dynamic characteristics.

[1]  Paul C. McIntyre,et al.  Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices , 2012, Materials.

[2]  K. Seo,et al.  High‐performance normally off AlGaN/GaN‐on‐Si HEMTs with partially recessed SiNx MIS structure , 2017 .

[3]  Xiaohua Ma,et al.  Enhancement Mode (E-Mode) AlGaN/GaN MOSFET With $10^{-13}$ A/mm Leakage Current and $10^{12}$ ON/OFF Current Ratio , 2014, IEEE Electron Device Letters.

[4]  Guido Groeseneken,et al.  Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs , 2015, 2015 IEEE International Reliability Physics Symposium.

[5]  David I. Shahin,et al.  Enhancement mode AlGaN/GaN MOS high-electron-mobility transistors with ZrO2 gate dielectric deposited by atomic layer deposition , 2016 .

[6]  Keigo Nakatani,et al.  A 2.4 GHz-Band 100 W GaN-HEMT High-Efficiency Power Amplifier for Microwave Heating , 2015 .

[7]  T. Egawa,et al.  Normally-OFF Al2O3/AlGaN/GaN MOS-HEMT on 8 in. Si with Low Leakage Current and High Breakdown Voltage (825 V) , 2014 .

[8]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[9]  Takashi Jimbo,et al.  Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4, and silicon oxynitride , 2004 .

[10]  Ho-Young Cha,et al.  Improvement of $V_{\rm th}$ Instability in Normally-Off GaN MIS-HEMTs Employing ${\rm PEALD}\hbox{-}{\rm SiN}_{\rm x}$ as an Interfacial Layer , 2014, IEEE Electron Device Letters.

[11]  Hui Yang,et al.  Normally OFF GaN-on-Si MIS-HEMTs Fabricated With LPCVD-SiNx Passivation and High-Temperature Gate Recess , 2016, IEEE Transactions on Electron Devices.

[12]  M. Han,et al.  Normally-off AlGaN/GaN MOS-HEMTs by KOH wet etch and rf-sputtered HfO2 gate insulator , 2013, 2013 25th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[13]  K. Seo,et al.  Investigation of flat band voltage shift in recessed-gate GaN MOSHFETs with post-metallization-annealing in oxygen atmosphere , 2015 .

[14]  Hee-Sung Kang,et al.  Effects of TMAH Treatment on Device Performance of Normally Off Al 2 O 3 /GaN MOSFET , 2011 .

[15]  H. Zirath,et al.  Influence of oxynitride (SiOxNy) passivation on the microwave performance of AlGaN/GaN HEMTs , 2008 .

[16]  Ho-Young Cha,et al.  High-Voltage and Low-Leakage-Current Gate Recessed Normally-Off GaN MIS-HEMTs With Dual Gate Insulator Employing PEALD-${\rm SiN}_{x}$ /RF-Sputtered-${\rm HfO}_{2}$ , 2014, IEEE Electron Device Letters.

[17]  Yilong Hao,et al.  High-Performance Normally-Off ${\rm Al}_{2}{\rm O}_{3}/{\rm GaN}$ MOSFET Using a Wet Etching-Based Gate Recess Technique , 2013, IEEE Electron Device Letters.

[18]  Hyun-Seop Kim,et al.  Effective Channel Mobility of AlGaN/GaN-on-Si Recessed-MOS-HFETs , 2016 .

[19]  Asif Khan,et al.  Enhancement-Mode Insulating-Gate AlInN/AlN/GaN Heterostructure Field-Effect Transistors with Threshold Voltage in Excess of +1.5 V , 2011 .

[20]  N. Ikeda,et al.  High field-effect mobility normally-off AlGaN/GaN hybrid MOS-HFET on Si substrate by selective area growth technique , 2011 .

[21]  Yilong Hao,et al.  900 V/1.6 mΩ · cm2 normally off Al 2O3/GaN MOSFET on silicon substrate , 2014 .

[22]  Hee-Sung Kang,et al.  Effects of TMAH Treatment on Device Performance of Normally Off $\hbox{Al}_{2}\hbox{O}_{3}/\hbox{GaN}$ MOSFET , 2011, IEEE Electron Device Letters.

[23]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[24]  Jae-Gil Lee,et al.  High-Quality ICPCVD $\hbox{SiO}_{2}$ for Normally Off AlGaN/GaN-on-Si Recessed MOSHFETs , 2013, IEEE Electron Device Letters.

[25]  H. C. Tuan,et al.  AlGaN/GaN MIS-HFET with improvement in high temperature gate bias stress-induced reliability , 2014, 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC's (ISPSD).

[26]  K. Seo,et al.  High quality PECVD SiO2 process for recessed MOS-gate of AlGaN/GaN-on-Si metal-oxide-semiconductor heterostructure field-effect transistors , 2016 .

[27]  H. Cha,et al.  Dynamic on-resistance of normally-off recessed AlGaN/GaN-on-Si metal–oxide–semiconductor heterojunction field-effect transistor , 2014 .

[28]  P. McIntyre,et al.  New method for determining flat-band voltage in high mobility semiconductors , 2013 .

[29]  Jae-Gil Lee,et al.  State-of-the-Art AlGaN/GaN-on-Si Heterojunction Field Effect Transistors with Dual Field Plates , 2012 .

[30]  D. Schroder Semiconductor Material and Device Characterization, 3rd Edition , 2005 .

[31]  Mark L. Green,et al.  Ultrathin (<4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits , 2001 .