Poisson Hypothesis for Information Networks (A study in non-linear Markov processes) I. Domain of Validity
暂无分享,去创建一个
[1] Leonard Kleinrock,et al. Communication Nets: Stochastic Message Flow and Delay , 1964 .
[2] V. V. Petrov. Sums of Independent Random Variables , 1975 .
[3] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[4] H. McKean. An exponential formula for solving Boltzmann's equation for a Maxwellian gas* , 1967 .
[5] G. Fayolle,et al. Thermodynamical Limit and Propagation of Chaos in Polling Systems , 1999 .
[6] Dietrich Stoyan,et al. Qualitative Eigenschaften und Abschätzungen stochastischer Modelle , 1977 .
[7] H. McKean,et al. A CLASS OF MARKOV PROCESSES ASSOCIATED WITH NONLINEAR PARABOLIC EQUATIONS , 1966, Proceedings of the National Academy of Sciences of the United States of America.
[8] T. Liggett. Interacting Particle Systems , 1985 .
[9] M. Hp. A class of markov processes associated with nonlinear parabolic equations. , 1966 .
[10] A. Rybko,et al. Poisson Hypothesis for Information Networks. II , 2005 .