Transcriptomics technologies

Transcriptomics technologies are the techniques used to study an organism’s transcriptome, the sum of all of its RNA transcripts. The information content of an organism is recorded in the DNA of its genome and expressed through transcription. Here, mRNA serves as a transient intermediary molecule in the information network, whilst noncoding RNAs perform additional diverse functions. A transcriptome captures a snapshot in time of the total transcripts present in a cell. The first attempts to study the whole transcriptome began in the early 1990s, and technological advances since the late 1990s have made transcriptomics a widespread discipline. Transcriptomics has been defined by repeated technological innovations that transform the field. There are two key contemporary techniques in the field: microarrays, which quantify a set of predetermined sequences, and RNA sequencing (RNA-Seq), which uses high-throughput sequencing to capture all sequences. Measuring the expression of an organism’s genes in different tissues, conditions, or time points gives information on how genes are regulated and reveals details of an organism’s biology. It can also help to infer the functions of previously unannotated genes. Transcriptomic analysis has enabled the study of how gene expression changes in different organisms and has been instrumental in the understanding of human disease. An analysis of gene expression in its entirety allows detection of broad coordinated trends which cannot be discerned by more targeted assays.

[1]  D. Kwiatkowski,et al.  Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance , 2015, Science.

[2]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[3]  Kui Lin,et al.  RNA-Seq improves annotation of protein-coding genes in the cucumber genome , 2011, BMC Genomics.

[4]  Wei Wu,et al.  NONCODE 2016: an informative and valuable data source of long non-coding RNAs , 2015, Nucleic Acids Res..

[5]  C. Pieterse,et al.  RNA-Seq: revelation of the messengers. , 2013, Trends in plant science.

[6]  Steven J. M. Jones,et al.  De novo assembly and analysis of RNA-seq data , 2010, Nature Methods.

[7]  Xiangqin Cui,et al.  Design and validation issues in RNA-seq experiments , 2011, Briefings Bioinform..

[8]  N. Friedman,et al.  Comprehensive comparative analysis of strand-specific RNA sequencing methods , 2010, Nature Methods.

[9]  Marianna Aprile,et al.  RNA-Seq and human complex diseases: recent accomplishments and future perspectives , 2012, European Journal of Human Genetics.

[10]  Eric T. Wang,et al.  An Abundance of Ubiquitously Expressed Genes Revealed by Tissue Transcriptome Sequence Data , 2009, PLoS Comput. Biol..

[11]  Nuno A. Fonseca,et al.  Expression Atlas update—an integrated database of gene and protein expression in humans, animals and plants , 2015, Nucleic Acids Res..

[12]  M. Blaxter,et al.  Comparing de novo assemblers for 454 transcriptome data , 2010, BMC Genomics.

[13]  R. Varshney,et al.  Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea , 2016, Scientific Reports.

[14]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[15]  A. H. Wang,et al.  Discovery of virulence factors of pathogenic bacteria. , 2008, Current opinion in chemical biology.

[16]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[17]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[18]  Gioele La Manno,et al.  Quantitative single-cell RNA-seq with unique molecular identifiers , 2013, Nature Methods.

[19]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[20]  F. Speleman,et al.  Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes , 2002, Genome Biology.

[21]  Alvis Brazma,et al.  Minimum Information About a Microarray Experiment (MIAME) – Successes, Failures, Challenges , 2009, TheScientificWorldJournal.

[22]  M. Wilkins,et al.  A transcriptome resource for the koala (Phascolarctos cinereus): insights into koala retrovirus transcription and sequence diversity , 2014, BMC Genomics.

[23]  Takuro Tamura,et al.  BodyParts3D: 3D structure database for anatomical concepts , 2008, Nucleic Acids Res..

[24]  C. Furusawa,et al.  Prediction of antibiotic resistance by gene expression profiles , 2014, Nature Communications.

[25]  N. Loman,et al.  A complete bacterial genome assembled de novo using only nanopore sequencing data , 2015, Nature Methods.

[26]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[27]  J. Michael Cherry,et al.  ENCODE data at the ENCODE portal , 2015, Nucleic Acids Res..

[28]  Nuno A. Fonseca,et al.  Tools for mapping high-throughput sequencing data , 2012, Bioinform..

[29]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[30]  Raphael Gottardo,et al.  Orchestrating high-throughput genomic analysis with Bioconductor , 2015, Nature Methods.

[31]  H. Noller Ribosomal RNA and translation. , 1991, Annual review of biochemistry.

[32]  J. Carpten,et al.  Translating RNA sequencing into clinical diagnostics: opportunities and challenges , 2016, Nature Reviews Genetics.

[33]  Steven N. Hart,et al.  Calculating Sample Size Estimates for RNA Sequencing Data , 2013, J. Comput. Biol..

[34]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[35]  Colin N. Dewey,et al.  De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis , 2013, Nature Protocols.

[36]  T. Krude,et al.  Functional Requirement of Noncoding Y RNAs for Human Chromosomal DNA Replication , 2006, Molecular and Cellular Biology.

[37]  Rasko Leinonen,et al.  The sequence read archive: explosive growth of sequencing data , 2011, Nucleic Acids Res..

[38]  Enrique Blanco,et al.  ENCODE (Encyclopedia of DNA Elements) , 2014 .

[39]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[40]  Valentina Proserpio,et al.  Single‐cell technologies to study the immune system , 2015, Immunology.

[41]  A. Hüttenhofer,et al.  Non-coding RNAs: hope or hype? , 2005, Trends in genetics : TIG.

[42]  C. Hermans,et al.  Molecular mechanisms of metal hyperaccumulation in plants. , 2009, The New phytologist.

[43]  Peter C. Dolan,et al.  A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation , 2013, BMC Genomics.

[44]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[45]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[46]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[47]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[48]  T. Wetter,et al.  Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.

[49]  T. Dallman,et al.  Performance comparison of benchtop high-throughput sequencing platforms , 2012, Nature Biotechnology.

[50]  A. Westermann,et al.  Dual RNA-seq of pathogen and host , 2012, Nature Reviews Microbiology.

[51]  J. McPherson,et al.  Coming of age: ten years of next-generation sequencing technologies , 2016, Nature Reviews Genetics.

[52]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[53]  M. Esteller Non-coding RNAs in human disease , 2011, Nature Reviews Genetics.

[54]  Jeffrey G. Reifenberger,et al.  Direct RNA sequencing , 2009, Nature.

[55]  J. Ayers,et al.  De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues , 2016, BMC Genomics.

[56]  I. Amit,et al.  Massively Parallel Single-Cell RNA-Seq for Marker-Free Decomposition of Tissues into Cell Types , 2014, Science.

[57]  Chien-Chi Lo,et al.  Rapid evaluation and quality control of next generation sequencing data with FaQCs , 2014, BMC Bioinformatics.

[58]  Margaret C. Linak,et al.  Sequence-specific error profile of Illumina sequencers , 2011, Nucleic acids research.

[59]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[60]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[61]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[62]  Daniel J. Gaffney,et al.  A survey of best practices for RNA-seq data analysis , 2016, Genome Biology.

[63]  Yongsheng Bai,et al.  Evaluation of de novo transcriptome assemblies from RNA-Seq data , 2014, Genome Biology.

[64]  C. d’Enfert,et al.  Candida albicans Biofilms: a Developmental State Associated With Specific and Stable Gene Expression Patterns , 2004, Eukaryotic Cell.

[65]  James R. Knight,et al.  Genome sequencing in microfabricated high-density picolitre reactors , 2005, Nature.

[66]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[67]  Robert Petryszak,et al.  ArrayExpress update—simplifying data submissions , 2014, Nucleic Acids Res..

[68]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[69]  R. Martienssen,et al.  Transposable elements and the epigenetic regulation of the genome , 2007, Nature Reviews Genetics.

[70]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[71]  Peter Widmayer,et al.  Genevestigator V3: A Reference Expression Database for the Meta-Analysis of Transcriptomes , 2008, Adv. Bioinformatics.

[72]  Daniel R. Garalde,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[73]  Reinhard Guthke,et al.  A review on computational systems biology of pathogen–host interactions , 2015, Front. Microbiol..

[74]  M. Gerstein,et al.  Role of non-coding sequence variants in cancer , 2016, Nature Reviews Genetics.

[75]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[76]  S. Kelly,et al.  TransRate: reference-free quality assessment of de novo transcriptome assemblies , 2015, bioRxiv.

[77]  Scott J Emrich,et al.  Assessing De Novo transcriptome assembly metrics for consistency and utility , 2013, BMC Genomics.