Lattice Boltzmann model for the interaction of (2+1)-dimensional solitons in generalized Gross–Pitaevskii equation

Abstract In this paper, a new lattice Boltzmann model for the interaction of two solitons in (2+1)-dimensional generalized Gross–Pitaevskii equation is proposed. By using the Chapman–Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales are obtained. By selecting the appropriate higher-order moments of equilibrium distribution functions, the macroscopic equation can be recovered. A numerical example is given to test the scheme. Numerical experiments demonstrate the lattice Boltzmann method is an appropriate tool to simulate the interaction of (2+1)-dimensional solitons.

[1]  C. Wieman,et al.  Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor , 1995, Science.

[2]  O. Filippova,et al.  Lattice-Boltzmann simulation of gas-particle flow in filters , 1997 .

[3]  Yang Guangwu A Lattice Boltzmann Equation for Waves , 2000 .

[4]  Bao-Feng Feng,et al.  A finite difference method for the Korteweg-de Vries and the Kadomtsev-Petviashvili equations , 1998 .

[5]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[6]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[7]  Irina Ginzburg,et al.  Variably saturated flow described with the anisotropic Lattice Boltzmann methods , 2006 .

[8]  Robert S. Bernard,et al.  Boundary conditions for the lattice Boltzmann method , 1996 .

[9]  Jing Chen,et al.  Symplectic structure-preserving integrators for the two-dimensional Gross-Pitaevskii equation for BEC , 2011, J. Comput. Appl. Math..

[10]  Miki Hirabayashi,et al.  The lattice BGK model for the Poisson equation , 2001 .

[11]  Thiab R. Taha,et al.  Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .

[12]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[13]  Luo Li-Shi,et al.  Theory of the lattice Boltzmann method: Lattice Boltzmann models for non-ideal gases , 2001 .

[14]  Ping-Wah Li On the numerical study of the KdV equation by the Semi-Implicit and Leap-frog Method , 1995 .

[15]  Skordos,et al.  Initial and boundary conditions for the lattice Boltzmann method. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Yeomans,et al.  Lattice Boltzmann simulation of nonideal fluids. , 1995, Physical review letters.

[17]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[18]  Yanhong Liu A lattice Boltzmann model for blood flows , 2012 .

[19]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[20]  S. Adhikari Numerical solution of the two-dimensional Gross-Pitaevskii equation for trapped interacting atoms , 2000, cond-mat/0001361.

[21]  Zhongjun Ma,et al.  A good approximation of modulated amplitude waves in Bose-Einstein condensates , 2014, Commun. Nonlinear Sci. Numer. Simul..

[22]  S Succi,et al.  Fast lattice Boltzmann solver for relativistic hydrodynamics. , 2010, Physical review letters.

[23]  Guangwu Yan,et al.  Lattice Boltzmann method for one and two-dimensional Burgers equation ☆ , 2008 .

[24]  Henrik Kalisch,et al.  A boundary value problem for the KdV equation: Comparison of finite-difference and Chebyshev methods , 2009, Math. Comput. Simul..

[25]  K. Sakkaravarthi,et al.  Non-autonomous bright matter wave solitons in spinor Bose–Einstein condensates , 2013, 1311.5659.

[26]  Ping Dong,et al.  Lattice Boltzmann schemes for the nonlinear Schrödinger equation. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Siraj-ul-Islam,et al.  A meshfree method for numerical solution of KdV equation , 2008 .

[28]  Guangwu Yan,et al.  Lattice Bhatnagar—Gross—Krook model for the Lorenz attractor , 2001 .

[29]  Siraj-ul-Islam,et al.  A meshfree interpolation method for the numerical solution of the coupled nonlinear partial differential equations , 2008 .

[30]  S Succi,et al.  Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  P. Markowich,et al.  Numerical solution of the Gross--Pitaevskii equation for Bose--Einstein condensation , 2003, cond-mat/0303239.

[32]  John G. Georgiadis,et al.  Migration of a van der Waals bubble: Lattice Boltzmann formulation , 2001 .

[33]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 1. Theoretical foundation , 1993, Journal of Fluid Mechanics.

[34]  John Abraham,et al.  Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow , 2007, J. Comput. Phys..

[35]  S. Nazarenko,et al.  Sustained turbulence in the three-dimensional Gross–Pitaevskii model , 2010, 1008.0096.

[36]  Sauro Succi,et al.  Nonlinear Stability of Compressible Thermal Lattice BGK Models , 1999, SIAM J. Sci. Comput..

[37]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[38]  Hannes Uecker,et al.  Coupled Mode Equations and Gap Solitons for the 2D Gross-Pitaevskii equation with a non-separable periodic potential , 2008, 0810.4499.

[39]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[40]  Michihisa Tsutahara,et al.  Lattice Boltzmann method for the compressible Euler equations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Sauro Succi,et al.  Lattice Boltzmann equation for quantum mechanics , 1993, comp-gas/9304002.

[42]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[43]  Hanquan Wang,et al.  A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates , 2007 .

[44]  Yeomans,et al.  Lattice Boltzmann simulations of liquid-gas and binary fluid systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  S Succi,et al.  Numerical validation of the quantum lattice Boltzmann scheme in two and three dimensions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[46]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[47]  Hanquan Wang,et al.  An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose-Einstein condensates , 2006, J. Comput. Phys..

[48]  Hayder Salman,et al.  A time-splitting pseudospectral method for the solution of the Gross-Pitaevskii equations using spherical harmonics with generalised-Laguerre basis functions , 2014, J. Comput. Phys..

[49]  M. S. Ismail A fourth-order explicit schemes for the coupled nonlinear Schrödinger equation , 2008, Appl. Math. Comput..

[50]  Guangwu Yan,et al.  Lattice Boltzmann model for wave propagation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  J. Zhou Lattice Boltzmann Methods for Shallow Water Flows , 2003 .

[52]  Sauro Succi Lattice Quantum Mechanics: An Application to Bose–Einstein Condensation , 1998 .

[53]  Shan,et al.  Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  M. S. Ismail Numerical solution of coupled nonlinear Schrödinger equation by Galerkin method , 2008, Math. Comput. Simul..

[55]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[56]  Chenghai Sun,et al.  Lattice-Boltzmann models for high speed flows , 1998 .

[57]  Shan,et al.  Lattice Boltzmann model for simulating flows with multiple phases and components. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[58]  A. Ladd Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results , 1993, Journal of Fluid Mechanics.

[59]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Contents , 2008 .

[60]  Succi Numerical solution of the Schrödinger equation using discrete kinetic theory. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[61]  Moran Wang,et al.  Roughness and cavitations effects on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods , 2007, J. Comput. Phys..

[62]  S. Succi,et al.  Three-Dimensional Flows in Complex Geometries with the Lattice Boltzmann Method , 1989 .

[63]  Manjun Ma,et al.  Bright soliton solution of a Gross-Pitaevskii equation , 2013, Appl. Math. Lett..

[64]  Huimin Wang,et al.  Numerical simulation of the ion-acoustic solitary waves in plasma based on lattice Boltzmann method , 2015 .

[65]  Bo Yan,et al.  Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation , 2011, J. Sci. Comput..

[66]  Zhenhua Chai,et al.  A novel lattice Boltzmann model for the Poisson equation , 2008 .