Network Farthest-Point Diagrams
暂无分享,去创建一个
Michiel H. M. Smid | Prosenjit Bose | Jean-Lou De Carufel | Anil Maheshwari | Stefan Schirra | Carsten Grimm | Christoph Doell | Kai Dannies | M. Smid | P. Bose | A. Maheshwari | S. Schirra | Kai Dannies | Christoph Doell | C. Grimm | J. Carufel
[1] David Taniar,et al. Reverse k Nearest Neighbor and Reverse Farthest Neighbor Search on Spatial Networks , 2009, Trans. Large Scale Data Knowl. Centered Syst..
[2] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[3] Cyrus Shahabi,et al. Voronoi-Based K Nearest Neighbor Search for Spatial Network Databases , 2004, VLDB.
[4] Micha Sharir,et al. The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..
[5] Atsuyuki Okabe,et al. Generalized network Voronoi diagrams: Concepts, computational methods, and applications , 2008, Int. J. Geogr. Inf. Sci..
[6] Bettina Speckmann,et al. Connect the dot: Computing feed-links for network extension , 2011, J. Spatial Inf. Sci..
[7] Gert Vegter,et al. In handbook of discrete and computational geometry , 1997 .
[8] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 1989, J. Comb. Theory A.
[9] Donald B. Johnson,et al. Efficient Algorithms for Shortest Paths in Sparse Networks , 1977, J. ACM.
[10] Michiel H. M. Smid,et al. On Farthest-Point Information in Networks , 2012, CCCG.
[11] Martine Labbé,et al. The Voronoi Partition of a Network and Its Implications in Location Theory , 1992, INFORMS J. Comput..
[12] Rex K. Kincaid. Exploiting Structure: Location Problems on Trees and Treelike Graphs , 2011 .
[13] Miloš Stojaković,et al. Linear time algorithm for optimal feed-link placement , 2015, Comput. Geom..
[14] Martin Erwig,et al. The graph Voronoi diagram with applications , 2000, Networks.
[15] Barbaros Ç. Tansel,et al. Discrete Center Problems , 2011 .
[16] Leonidas J. Guibas,et al. Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..
[17] Rolf Klein,et al. Abstract Voronoi diagrams revisited , 2009, Comput. Geom..
[18] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1985, SCG '85.
[19] John Hershberger,et al. Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..
[20] Atsuo Suzuki,et al. THE k TH NEAREST NETWORK VORONOI DIAGRAM AND ITS APPLICATION TO DISTRICTING PROBLEM OF AMBULANCE SYSTEMS , 2005 .
[21] David Taniar,et al. Spatial Network RNN Queries in GIS , 2011, Comput. J..
[22] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[23] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[24] Micha Sharir,et al. Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.
[25] Hazel Everett,et al. Throwing Stones Inside Simple Polygons , 2006, AAIM.
[26] H. Frank,et al. Letter to the Editor - A Note on a Graph Theoretic Game of Hakimi's , 1967, Oper. Res..