Properties of Unshunted and Resistively Shunted Nb/AlOx-Al/Nb Josephson Junctions With Critical Current Densities From 0.1 to 1 mA/μm2

We investigated current–voltage characteristics of unshunted and externally shunted Josephson junctions (JJs) with high critical current densities <italic>J</italic><sub>c</sub> in order to extract their basic parameters and statistical characteristics for JJ modeling in superconducting integrated circuits as well as to assess their potential for future technology nodes. Nb/AlO<italic><sub>x</sub></italic>-Al/Nb junctions with diameters from 0.5 to 6 μm were fabricated using a fully planarized process with Mo or MoN<italic><sub>x</sub></italic> thin-film shunt resistors with sheet resistance <italic>R</italic><sub>sq</sub> = 2 Ω/sq and <italic>R</italic><sub>sq </sub> = 6 Ω/sq, respectively. We used our current standard MIT Lincoln Laboratory process node SFQ5ee to fabricate JJs with <italic>J</italic><sub>c</sub> = 0.1 mA/μm<sup>2</sup> and our new process node SFQ5hs (where “hs” stands for high speed) to make JJs with <italic>J</italic><sub>c</sub> = 0.2 mA/μm <sup>2</sup> and higher current densities up to about 1 mA/μm<sup>2</sup>. Using <italic>LRC</italic> resonance features on the <italic>I–V</italic> characteristics of shunted JJs, we extract the inductance associated with Mo shunt resistors of 1.4 pH/sq. The main part of this inductance, about 1.1 pH/sq, is the inductance of the 40-nm Mo resistor film, while the geometrical inductance of superconducting Nb wiring contributes the rest. We attribute this large inductance to “kinetic” inductance arising from the complex conductivity of a thin normal-metal film in an electromagnetic field with angular frequency <inline-formula><tex-math notation="LaTeX">$\boldsymbol{\omega },$ </tex-math></inline-formula> <inline-formula><tex-math notation="LaTeX">${{\mathbf \sigma }}(\boldsymbol{\omega }) = {\boldsymbol{\sigma }_0}/({1 + \boldsymbol{i\omega \tau }})$</tex-math></inline-formula>, where <inline-formula><tex-math notation="LaTeX"> ${{{\mathbf \sigma }}_0}$</tex-math></inline-formula> is the static conductivity and <inline-formula> <tex-math notation="LaTeX">$\boldsymbol{\tau }$</tex-math></inline-formula> the electron scattering time. Using a resonance in a large-area unshunted high-<italic>J</italic><sub>c</sub> junction excited by a resistively coupled small-area shunted JJ, we extract the Josephson plasma frequency and specific capacitance of high-<italic>J</italic> <sub>c</sub> junctions in 0.1–1 mA/μm<sup>2</sup> <italic>J</italic><sub>c</sub> range. We also present data on <italic>J</italic><sub>c</sub> targeting and JJ critical current spreads. We discuss the potential of using 0.2-mA/μm<sup>2</sup> JJs in very large scale integration single flux quantum circuits and 0.5-mA/μm<sup>2</sup> JJs in high-density integrated circuits without shunt resistors.

[1]  G. V. Chester,et al.  Solid State Physics , 2000 .

[2]  D. Mccumber Effect of ac Impedance on dc Voltage‐Current Characteristics of Superconductor Weak‐Link Junctions , 1968 .

[3]  W. C. Stewart,et al.  CURRENT‐VOLTAGE CHARACTERISTICS OF JOSEPHSON JUNCTIONS , 1968 .

[4]  T. Claeson,et al.  Subharmonic Generation in an LC Resonant Josephson Tunnel Junction , 1987 .

[5]  C. P. McClay,et al.  Fabrication of Nb/Al-Al/sub 2/O/sub 3//Nb junctions with extremely low leakage currents , 1989 .

[6]  High quality Nb-AlO/sub x/-Nb junctions for microwave receivers and SFQ logic device , 1991 .

[7]  W. H. Mallison,et al.  Niobium trilayer Josephson tunnel junctions with ultrahigh critical current densities , 1993 .

[8]  S. Han,et al.  Complete phase-locking in a one-dimensional series biased Josephson-junction array , 1993, IEEE Transactions on Applied Superconductivity.

[9]  Design of a lumped array of Josephson junction oscillators , 1993, IEEE Transactions on Applied Superconductivity.

[10]  Arnold,et al.  Observation of multiple Andreev reflections in superconducting tunnel junctions. , 1994, Physical review letters.

[11]  A. Fujimaki,et al.  Characteristics of high critical current density Josephson junctions with Nb/AlO/sub x//Nb trilayers , 1995, IEEE Transactions on Applied Superconductivity.

[12]  M. G. Forrester,et al.  Effect of inductance in externally shunted Josephson tunnel junctions , 1995 .

[13]  Masahiro Aoyagi,et al.  Specific capacitance of Nb/AlOx/Nb Josephson junctions with critical current densities in the range of 0.1–18 kA/cm2 , 1995 .

[14]  W. H. Mallison,et al.  Electrical characterization of Nb/Al-oxide/Nb Josephson junctions with high critical current densities , 1995, IEEE Transactions on Applied Superconductivity.

[15]  W. H. Mallison,et al.  Dependence of critical current density on oxygen exposure in Nb-AlO/sub x/-Nb tunnel junctions , 1995, IEEE Transactions on Applied Superconductivity.

[16]  A.W. Kleinsasser,et al.  Effect of growth conditions on the electrical properties of Nb/Al-oxide/Nb tunnel junctions , 1995, IEEE Transactions on Applied Superconductivity.

[17]  A. B. Cawthorne,et al.  Complex dynamics of resistively and inductively shunted Josephson junctions , 1998 .

[18]  Y. Naveh,et al.  Universal distribution of transparencies in highly conductive Nb/AlO(x)/Nb junctions. , 2000, Physical review letters.

[19]  Shuichi Tahara,et al.  Fabrication Technology for Nb Integrated Circuits , 2001 .

[20]  Dynamics of a Josephson array in a resonant cavity , 2001, cond-mat/0111028.

[21]  Theory of two-dimensional Josephson arrays in a resonant cavity , 2002, cond-mat/0207629.

[22]  K. Likharev,et al.  Tunneling properties of barriers in Nb/Al/AlO/sub x//Nb junctions , 2003 .

[23]  Stony Brook,et al.  Aluminum Oxide Layers as Possible Components for Layered Tunnel Barriers , 2004 .

[24]  Vasili K. Semenov,et al.  Characterization of HYPRES' 4.5 & 8 Fabrication Processes , 2005 .

[25]  K. Delin,et al.  Direct measurement of the Josephson plasma resonance frequency from I-V Characteristics , 2005, IEEE Transactions on Applied Superconductivity.

[26]  R. Buhrman,et al.  Oxygen stoichiometry and instability in aluminum oxide tunnel barrier layers , 2005, cond-mat/0501354.

[27]  S. Sarwana,et al.  Characterization of HYPRES' 4.5 kA/cm/sup 2/ & 8 kA/cm/sup 2/ Nb/AlO/sub x//Nb fabrication processes , 2005, IEEE Transactions on Applied Superconductivity.

[28]  Yoshihito Hashimoto,et al.  Method for detailed evaluation of yield of Nb josephson junctions , 2006 .

[29]  Shuichi Nagasawa,et al.  Characteristics of Nb/AlOx/Nb junctions fabricated in planarized multi-layer Nb SFQ circuits , 2006 .

[30]  D. Amparo,et al.  20 ${\hbox{kA/cm}}^{2}$ Process Development for Superconducting Integrated Circuits With 80 GHz Clock Frequency , 2007, IEEE Transactions on Applied Superconductivity.

[31]  S. Sarwana,et al.  Parametric Testing of HYPRES Superconducting Integrated Circuit Fabrication Processes , 2007, IEEE Transactions on Applied Superconductivity.

[32]  Inc.,et al.  Electrical stress effect on Josephson tunneling through ultrathin AlOx barrier in Nb/Al/AlOx/Nb junctions , 2008, 0806.3094.

[33]  B. Bumble,et al.  Fabrication of Submicrometer High Current Density Junctions , 2009 .

[34]  Kazuyoshi Takagi,et al.  New Nb multi-layer fabrication process for large-scale SFQ circuits , 2009 .

[35]  B. Bumble,et al.  Fabrication of Submicrometer High Current Density ${\hbox{ Nb/Al-AlN}}_{\rm x}/{\hbox{ Nb}}$ Junctions , 2009, IEEE Transactions on Applied Superconductivity.

[36]  Jie Ren,et al.  Progress With Physically and Logically Reversible Superconducting Digital Circuits , 2011, IEEE Transactions on Applied Superconductivity.

[37]  M. Hidaka,et al.  Device Yield in Nb-Nine-Layer Circuit Fabrication Process , 2013, IEEE Transactions on Applied Superconductivity.

[38]  Kazuyoshi Takagi,et al.  Nb 9-Layer Fabrication Process for Superconducting Large-Scale SFQ Circuits and Its Process Evaluation , 2014, IEICE Trans. Electron..

[39]  M. Gouker,et al.  Fabrication Process and Properties of Fully-Planarized Deep-Submicron Nb/Al– $\hbox{AlO}_{\rm x}\hbox{/Nb} $ Josephson Junctions for VLSI Circuits , 2014, IEEE Transactions on Applied Superconductivity.

[40]  V. Semenov,et al.  Inductance of Circuit Structures for MIT LL Superconductor Electronics Fabrication Process With 8 Niobium Layers , 2014, IEEE Transactions on Applied Superconductivity.

[41]  M. Manheimer,et al.  Cryogenic Computing Complexity Program: Phase 1 Introduction , 2015, IEEE Transactions on Applied Superconductivity.

[42]  Vasili K. Semenov,et al.  New AC-Powered SFQ Digital Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[43]  S. Nagasawa,et al.  Uniformity and Reproducibility of Submicron 20kA/cm² Nb/AlOx/Nb Josephson Junction Process , 2015, 2015 15th International Superconductive Electronics Conference (ISEC).

[44]  S. K. Tolpygo Superconductor digital electronics: Scalability and energy efficiency issues (Review Article) , 2016, 1602.03546.

[45]  M. Gouker,et al.  Advanced Fabrication Processes for Superconducting Very Large-Scale Integrated Circuits , 2015, IEEE Transactions on Applied Superconductivity.

[46]  V. Semenov,et al.  AC-Biased Shift Registers as Fabrication Process Benchmark Circuits and Flux Trapping Diagnostic Tool , 2016, IEEE Transactions on Applied Superconductivity.

[47]  Waldemar Nawrocki,et al.  Modeling of LC-shunted intrinsic Josephson junctions in high-Tc superconductors , 2017 .