Recurrent establishment of de novo centromeres in the pericentromeric region of maize chromosome 3

[1]  Kevin L. Schneider,et al.  Improved maize reference genome with single-molecule technologies , 2017, Nature.

[2]  E. Eichler,et al.  Epigenetic origin of evolutionary novel centromeres , 2017, Scientific Reports.

[3]  F. Han,et al.  De Novo Centromere Formation and Centromeric Sequence Expansion in Wheat and its Wide Hybrids , 2016, PLoS genetics.

[4]  Kevin L. Schneider,et al.  Inbreeding drives maize centromere evolution , 2016, Proceedings of the National Academy of Sciences.

[5]  Jiming Jiang,et al.  Gene Expression and Chromatin Modifications Associated with Maize Centromeres , 2015, G3: Genes, Genomes, Genetics.

[6]  Jawon Song,et al.  Examining the Causes and Consequences of Context-Specific Differential DNA Methylation in Maize1[OPEN] , 2015, Plant Physiology.

[7]  Xiu-Jie Wang,et al.  Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize , 2015, Proceedings of the National Academy of Sciences.

[8]  Jiming Jiang,et al.  Boom-Bust Turnovers of Megabase-Sized Centromeric DNA in Solanum Species: Rapid Evolution of DNA Sequences Associated with Centromeres[C][W] , 2014, Plant Cell.

[9]  K. C. Scott,et al.  Neocentromeres: a place for everything and everything in its place. , 2014, Trends in genetics : TIG.

[10]  Jiming Jiang,et al.  Maize centromeres expand and adopt a uniform size in the genetic background of oat , 2014, Genome research.

[11]  Xiu-Jie Wang,et al.  Formation of a Functional Maize Centromere after Loss of Centromeric Sequences and Gain of Ectopic Sequences[C][W] , 2013, Plant Cell.

[12]  J. Thakur,et al.  Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans , 2013, Genome research.

[13]  Hiroshi Kimura,et al.  Chromosome Engineering Allows the Efficient Isolation of Vertebrate Neocentromeres , 2013, Developmental cell.

[14]  Xiu-Jie Wang,et al.  De novo centromere formation on a chromosome fragment in maize , 2013, Proceedings of the National Academy of Sciences.

[15]  J. Bennetzen,et al.  Centromere retention and loss during the descent of maize from a tetraploid ancestor , 2012, Proceedings of the National Academy of Sciences.

[16]  Jiming Jiang,et al.  Repeatless and Repeat-Based Centromeres in Potato: Implications for Centromere Evolution[C][W] , 2012, Plant Cell.

[17]  P. Kalitsis,et al.  The evolutionary life cycle of the resilient centromere , 2012, Chromosoma.

[18]  N. Archidiacono,et al.  Centromere repositioning in mammals , 2011, Heredity.

[19]  Jiming Jiang,et al.  Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. , 2011, Genome research.

[20]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[21]  S. Andrews,et al.  Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications , 2011, Bioinform..

[22]  James C. Schnable,et al.  Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss , 2011, Proceedings of the National Academy of Sciences.

[23]  S. Salzberg,et al.  NIH Public Access Author Manuscript , 2006 .

[24]  Dawn H. Nagel,et al.  The B73 Maize Genome: Complexity, Diversity, and Dynamics , 2009, Science.

[25]  Kevin L. Schneider,et al.  Maize Centromere Structure and Evolution: Sequence Analysis of Centromeres 2 and 5 Reveals Dynamic Loci Shaped Primarily by Retrotransposons , 2009, PLoS genetics.

[26]  M. Gu,et al.  Unstable transmission of rice chromosomes without functional centromeric repeats in asexual propagation , 2009, Chromosome Research.

[27]  W. Jin,et al.  Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation , 2009, Proceedings of the National Academy of Sciences.

[28]  Dustin E. Schones,et al.  A clustering approach for identification of enriched domains from histone modification ChIP-Seq data , 2009, Bioinform..

[29]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[30]  C. Topp,et al.  Identification of a Maize Neocentromere in an Oat-Maize Addition Line , 2009, Cytogenetic and Genome Research.

[31]  N. Archidiacono,et al.  Evolutionary descent of a human chromosome 6 neocentromere: a jump back to 17 million years ago. , 2009, Genome research.

[32]  L. Pachter,et al.  TopHat: discovering splice junctions with RNA-Seq , 2009, Bioinform..

[33]  J. Berman,et al.  Neocentromeres Form Efficiently at Multiple Possible Loci in Candida albicans , 2009, PLoS genetics.

[34]  Michael Freeling,et al.  The Value of Nonmodel Genomes and an Example Using SynMap Within CoGe to Dissect the Hexaploidy that Predates the Rosids , 2008, Tropical Plant Biology.

[35]  Y. Hiraoka,et al.  Heterochromatin Integrity Affects Chromosome Reorganization After Centromere Dysfunction , 2008, Science.

[36]  Owen J. Marshall,et al.  Neocentromeres: new insights into centromere structure, disease development, and karyotype evolution. , 2008, American journal of human genetics.

[37]  Steven G. Schroeder,et al.  Physical and Genetic Structure of the Maize Genome Reflects Its Complex Evolutionary History , 2007, PLoS genetics.

[38]  J. Birchler,et al.  A hemicentric inversion in the maize line knobless Tama flint created two sites of centromeric elements and moved the kinetochore-forming region , 2007, Chromosoma.

[39]  I. Schubert,et al.  Stable barley chromosomes without centromeric repeats. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Steven Salzberg,et al.  DAGchainer: a tool for mining segmental genome duplications and synteny , 2004, Bioinform..

[41]  Jianxin Ma,et al.  Close split of sorghum and maize genome progenitors. , 2004, Genome research.

[42]  E. Eichler,et al.  Recurrent sites for new centromere seeding. , 2004, Genome research.

[43]  A. Paterson,et al.  Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Henikoff,et al.  Maize Centromeres: Organization and Functional Adaptation in the Genetic Background of Oat , 2004, The Plant Cell Online.

[45]  S. Henikoff,et al.  Sequencing of a rice centromere uncovers active genes , 2004, Nature Genetics.

[46]  Jiming Jiang,et al.  A molecular view of plant centromeres. , 2003, Trends in plant science.

[47]  L. Anderson,et al.  High-resolution crossover maps for each bivalent of Zea mays using recombination nodules. , 2003, Genetics.

[48]  Jonathan M. Mudge,et al.  Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. , 2003, Genome research.

[49]  S. Henikoff,et al.  Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. , 2003, Genetics.

[50]  C. Topp,et al.  Centromeric Retroelements and Satellites Interact with Maize Kinetochore Protein CENH3 , 2002, The Plant Cell Online.

[51]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[52]  A. Stec,et al.  A complete set of maize individual chromosome additions to the oat genome. , 2001, Plant physiology.

[53]  K. Choo,et al.  Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins. , 2000, Human molecular genetics.

[54]  R. Phillips,et al.  Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  S. Schwartz,et al.  Identification of centromeric antigens in dicentric Robertsonian translocations: CENP-C and CENP-E are necessary components of functional centromeres. , 1995, Human molecular genetics.

[56]  L. Voullaire,et al.  A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? , 1993, American journal of human genetics.

[57]  M. Rocchi,et al.  An alphoid DNA sequence conserved in all human and great ape chromosomes: evidence for ancient centromeric sequences at human chromosomal regions 2q21 and 9q13 , 1993, Human Genetics.

[58]  L. Stadler,et al.  The Effect of X-Rays upon Mutation of the Gene A in Maize. , 1948, Genetics.

[59]  W. Willis,et al.  The Origin of Man : A Chromosomal Pictorial Legacy , 2014 .