Optimized Runge-Kutta pairs for problems with oscillating solutions

Three types of methods for integrating periodic initial value problems are presented. These methods are (i) phase-fitted, (ii) zero dissipation (iii) both zero dissipative and phase fitted. Some particular modifications of well-known explicit Runge-Kutta pairs of orders five and four are constructed. Numerical experiments show the efficiency of the new pairs in a wide range of oscillatory problems.

[1]  E. Fehlberg,et al.  Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems , 1969 .

[2]  J. Dormand,et al.  A family of embedded Runge-Kutta formulae , 1980 .

[3]  Susan Eitelman,et al.  Matlab Version 6.5 Release 13. The MathWorks, Inc., 3 Apple Hill Dr., Natick, MA 01760-2098; 508/647-7000, Fax 508/647-7001, www.mathworks.com , 2003 .

[4]  The spectral analysis of the matrix multisplitting method for the one-dimensional model problem☆ , 1998 .

[5]  S. N. Papakostas,et al.  High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..

[6]  A. D. Raptis,et al.  A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .

[7]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[8]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[9]  J. Butcher The Numerical Analysis of Ordinary Di erential Equa-tions , 1986 .

[11]  Ch. Tsitouras,et al.  A general family of explicit Runge-Kutta pairs of orders 6(5) , 1996 .

[12]  George Papageorgiou,et al.  A family of fifth-order Runge-Kutta pairs , 1996, Math. Comput..

[13]  T. E. Simos,et al.  A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .

[14]  W. Gautschi Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .

[15]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[16]  R. Van Dooren Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .

[17]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[18]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[19]  Ch. Tsitouras A high-order explicit Runge-Kutta pair for initial value problems with oscillating solutions , 1999 .

[20]  Charalampos Tsitouras,et al.  Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..

[21]  Stephen Wolfram,et al.  Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .

[22]  C. Tsitouras A parameter study of explicit Runge-Kutta pairs of orders 6(5) , 1998 .

[23]  P. Brown A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .

[24]  Theodore E. Simos,et al.  Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..