Time-series and Phase-curve Photometry of the Episodically Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200, and ZTF

We observed the episodically active asteroid (6478) Gault in 2020 with multiple telescopes in Asia and North America and found that it is no longer active after its recent outbursts at the end of 2018 and the start of 2019. The inactivity during this apparition allowed us to measure the absolute magnitude of Gault of H r = 14.63 ± 0.02, G r = 0.21 ± 0.02 from our secular phase-curve observations. In addition, we were able to constrain Gault’s rotation period using time-series photometric lightcurves taken over 17 hr on multiple days in 2020 August, September, and October. The photometric lightcurves have a repeating ≲0.05 mag feature suggesting that (6478) Gault has a rotation period of ∼2.5 hr and may have a semispherical or top-like shape, much like the near-Earth asteroids Ryugu and Bennu. The rotation period of ∼2.5 hr is near the expected critical rotation period for an asteroid with the physical properties of (6478) Gault, suggesting that its activity observed over multiple epochs is due to surface mass shedding from its fast rotation spin-up by the Yarkovsky–O’Keefe–Radzievskii–Paddack effect.

[1]  A. Mahabal,et al.  Initial Characterization of Active Transitioning Centaur, P/2019 LD2 (ATLAS), Using Hubble, Spitzer, ZTF, Keck, Apache Point Observatory, and GROWTH Visible and Infrared Imaging and Spectroscopy , 2020 .

[2]  A. Mahabal,et al.  Initial Visible and Mid-IR Characterization of P/2019 LD2 (ATLAS), an Active Transitioning Centaur Among the Trojans, with Hubble, Spitzer, ZTF, Keck, APO and GROWTH Imaging and Spectroscopy , 2020, 2011.03782.

[3]  A. Mahabal,et al.  Characterization of Temporarily Captured Minimoon 2020 CD3 by Keck Time-resolved Spectrophotometry , 2020, The Astrophysical Journal.

[4]  D. Britt,et al.  Spin-driven evolution of asteroids' top-shapes at fast and slow spins seen from (101955) Bennu and (162173) Ryugu , 2020, Icarus.

[5]  J. Blum,et al.  Activity of (6478) Gault during 2019 January 13–March 28 , 2020, 2005.12030.

[6]  A. Carbognani,et al.  Spinning and colour properties of the active asteroid (6478) Gault , 2020, 2001.05748.

[7]  B. Bolin,et al.  Constraints on the spin-pole orientation, jet morphology, and rotation of interstellar comet 2I/Borisov with deep HST imaging , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  A. Mahabal,et al.  Characterization of the Nucleus, Morphology, and Activity of Interstellar Comet 2I/Borisov by Optical and Near-infrared GROWTH, Apache Point, IRTF, ZTF, and Keck Observations , 2019, The Astronomical Journal.

[9]  F. DeMeo,et al.  Active Asteroid (6478) Gault: A Blue Q-type Surface below the Dust? , 2019, The Astrophysical Journal.

[10]  E. Wright,et al.  Physical Characterization of Active Asteroid (6478) Gault , 2019, The Astrophysical Journal.

[11]  Dennis Bodewits,et al.  ZChecker: Zwicky Transient Facility moving target checker for short object lists , 2019 .

[12]  C. McCully,et al.  Astro-SCRAPPY: Speedy Cosmic Ray Annihilation Package in Python , 2019 .

[13]  I. Ferrín,et al.  Secular and rotational light curves of 6478 Gault , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  D. Trilling,et al.  Six Years of Sustained Activity in (6478) Gault , 2019, The Astrophysical Journal.

[15]  Man-To Hui (許文韜),et al.  New active asteroid (6478) Gault , 2019, Monthly Notices of the Royal Astronomical Society: Letters.

[16]  R. Kotulla,et al.  Episodically Active Asteroid 6478 Gault , 2019, The Astrophysical Journal.

[17]  Larry Denneau,et al.  The Sporadic Activity of (6478) Gault: A YORP-driven Event? , 2019, The Astrophysical Journal.

[18]  M. Serra-Ricart,et al.  Dust properties of double-tailed active asteroid (6478) Gault , 2019, Astronomy & Astrophysics.

[19]  M. Soumagnac,et al.  Multiple Outbursts of Asteroid (6478) Gault , 2019, The Astrophysical Journal.

[20]  D. Jewitt,et al.  High-resolution Thermal Infrared Imaging of 3200 Phaethon , 2019, The Astronomical Journal.

[21]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[22]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[23]  P. Taylor,et al.  Arecibo radar observations of near-Earth asteroid (3200) Phaethon during the 2017 apparition , 2019, Planetary and Space Science.

[24]  K. Chambers,et al.  Searching for Super-fast Rotators Using the Pan-STARRS 1 , 2018, The Astrophysical Journal Supplement Series.

[25]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[26]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[27]  S. Urakawa,et al.  Optical observations of NEA 3200 Phaethon (1983 TB) during the 2017 apparition , 2018, Astronomy & Astrophysics.

[28]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[29]  R. Roy,et al.  Spin states of asteroids in the Eos collisional family , 2017, 1707.05507.

[30]  Ralf Kotulla,et al.  Interstellar Interloper 1I/2017 U1: Observations from the NOT and WIYN Telescopes , 2017, 1711.05687.

[31]  Andrew J. Connolly,et al.  APO Time-resolved Color Photometry of Highly Elongated Interstellar Object 1I/‘Oumuamua , 2017, 1711.04927.

[32]  Hee-Jae Lee,et al.  Confirmation of Large Super-fast Rotator (144977) 2005 EC127 , 2017, 1704.08451.

[33]  D. Jewitt,et al.  Anatomy of an Asteroid Breakup: The Case of P/2013 R3 , 2017, The Astronomical Journal.

[34]  K. Chambers,et al.  The Splitting of Double-component Active Asteroid P/2016 J1 (PANSTARRS) , 2017, 1702.03665.

[35]  R. Jedicke,et al.  The young Datura asteroid family - Spins, shapes, and population estimate , 2017 .

[36]  P. Beck,et al.  Composition of Solar System Small Bodies , 2016, 1611.08731.

[37]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[38]  Thomas A. Prince,et al.  LARGE SUPER-FAST ROTATOR HUNTING USING THE INTERMEDIATE PALOMAR TRANSIENT FACTORY , 2016, 1608.07910.

[39]  Conor Sayres,et al.  Astrophysical Research Consortium Telescope Imaging Camera (ARCTIC) facility optical imager for the Apache Point Observatory 3.5m telescope , 2016, Astronomical Telescopes + Instrumentation.

[40]  E. Beshore,et al.  A fast method for quantifying observational selection effects in asteroid surveys , 2016 .

[41]  Michael Shao,et al.  CHIMERA: a wide-field, multi-colour, high-speed photometer at the prime focus of the Hale telescope , 2016, 1601.03104.

[42]  D. Scheeres Landslides and Mass shedding on spinning spheroidal asteroids , 2014, 1409.4015.

[43]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[44]  Robert Jedicke,et al.  Detecting Earth’s temporarily-captured natural satellites—Minimoons , 2014, 1406.3534.

[45]  P. Michel,et al.  Thermal fatigue as the origin of regolith on small asteroids , 2014, Nature.

[46]  R. Wainscoat,et al.  Continued activity in P/2013 P5 PANSTARRS - Unexpected comet, rotational break-up, or rubbing binary asteroid? , 2014 .

[47]  D. Jewitt,et al.  THE EXTRAORDINARY MULTI-TAILED MAIN-BELT COMET P/2013 P5 , 2013, 1311.1483.

[48]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[49]  Daniel J. Scheeres,et al.  The strength of regolith and rubble pile asteroids , 2013, 1306.1622.

[50]  John W. Fowler,et al.  Aperture Photometry Tool , 2012 .

[51]  A. Harris,et al.  On the maximum amplitude of harmonics of an asteroid lightcurve , 2012 .

[52]  A. Harris,et al.  Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations , 2012 .

[53]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[54]  A. Fitzsimmons,et al.  A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2 , 2010, Nature.

[55]  Karri Muinonen,et al.  A three-parameter magnitude phase function for asteroids , 2010 .

[56]  S. Roweis,et al.  ASTROMETRY.NET: BLIND ASTROMETRIC CALIBRATION OF ARBITRARY ASTRONOMICAL IMAGES , 2009, 0910.2233.

[57]  D. Vokrouhlický,et al.  Spin rate distribution of small asteroids , 2008 .

[58]  William F. Bottke,et al.  THE YARKOVSKY AND YORP EFFECTS: Implications for Asteroid Dynamics , 2006 .

[59]  M. Bershady,et al.  SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration , 2004, astro-ph/0403456.

[60]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[61]  W. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[62]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .