Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies

Atomic scale computer simulations, validated with experimental data, are used to uncover the factors responsible for defect-induced chemical expansion observed in non-stoichiometric oxides, exemplified by CeO2 and ZrO2. It is found that chemical expansion is the result of two competing processes: the formation of a vacancy (leading to a lattice contraction primarily due to electrostatic interactions) and the cation radius change (leading to a lattice expansion primarily due to steric effects). The chemical expansion coefficient is modeled as the summation of two terms that are proportional to the cation and oxygen radius change. This model introduces an empirical parameter, the vacancy radius, which can be reliably predicted from computer simulations, as well as from experimental data. This model is used to predict material compositions that minimize chemical expansion in fluorite structured solid oxide fuel cell electrolyte materials under typical operating conditions.

[1]  J. Kilner,et al.  Ionic conductivity of Ce1−xNdxO2−x / 2 , 2006 .

[2]  Brian W. Sheldon,et al.  Stresses due to oxygen potential gradients in non-stoichiometric oxides , 2004 .

[3]  M. Yoshimura,et al.  Application of an Ion‐Packing Model Based on Defect Clusters to Zirconia Solid Solutions: II, Applicability of Vegard's Law , 1992 .

[4]  A. Hagen,et al.  Defect Chemistry and Thermomechanical Properties of Ce0.8Pr x Tb0.2 − x O2 − δ , 2010 .

[5]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[6]  Harry L. Tuller,et al.  Small polaron electron transport in reduced CeO2 single crystals , 1977 .

[7]  E. Wachsman,et al.  The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides , 2007 .

[8]  R. Fournelle,et al.  A high temperature lattice parameter and dilatometer study of the defect structure of nonstoichiometric cerium dioxide , 1993 .

[9]  J. B. Adams,et al.  Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT+U study. , 2010, The Journal of chemical physics.

[10]  P. Madden,et al.  Structural Disorder in Doped Zirconias, Part I: The Zr0.8Sc0.2-xYxO1.9 (0.0 ≤x ≤ 0.2) System , 2011 .

[11]  V. Buršíková,et al.  Relationship between effective ionic radii, structure and electro-mechanical properties of zirconia stabilized with rare earth oxides M2O3 (M = Yb, Y, Sm) , 2009 .

[12]  E. Traversa,et al.  Ionic conductivity in oxide heterostructures: the role of interfaces , 2010, Science and technology of advanced materials.

[13]  J. Kuebler,et al.  Simulation and Validation of Thermo‐mechanical Stresses in Planar SOFCs , 2010 .

[14]  J. Kilner Defects and Conductivity in Ceria-based Oxides , 2008 .

[15]  B. Yildiz,et al.  Chemical Expansion and Frozen-In Oxygen Vacancies in Pr-Doped Ceria , 2011, ECS Transactions.

[16]  K. Clausen,et al.  Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures , 1999 .

[17]  B. Yildiz,et al.  Oxygen ion diffusivity in strained yttria stabilized zirconia: where is the fastest strain? , 2010 .

[18]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[19]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[20]  B. Yildiz,et al.  Chemical expansion of nonstoichiometric Pr0.1Ce0.9O2−δ: Correlation with defect equilibrium model , 2011 .

[21]  N. Swaminathan,et al.  Evaluation of thermomechanical properties of non-stoichiometric gadolinium doped ceria using atomistic simulations , 2009 .

[22]  E. Wachsman,et al.  Thermo‐Chemical Expansion in Strontium‐Doped Lanthanum Cobalt Iron Oxide , 2010 .

[23]  N. Sammes,et al.  Physical, chemical and electrochemical properties of pure and doped ceria , 2000 .

[24]  P. Madden,et al.  High-pressure behaviour of GeO2: a simulation study , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  S J Pennycook,et al.  Colossal Ionic Conductivity at Interfaces of Epitaxial ZrO2:Y2O3/SrTiO3 Heterostructures , 2008, Science.

[26]  X. Tan,et al.  Mixed Conducting Ceramics for Catalytic Membrane Processing , 2006 .

[27]  A. Atkinson Chemically-induced stresses in gadolinium-doped ceria solid oxide fuel cell electrolytes , 1997 .

[28]  P. Madden,et al.  Structural Disorder in Doped Zirconias, Part II: Vacancy Ordering Effects and the Conductivity Maximum. , 2011 .

[29]  E. Wachtel,et al.  Local Structure and Strain‐Induced Distortion in Ce0.8Gd0.2O1.9 , 2010, Advanced materials.

[30]  K. Sasaki,et al.  Re-analysis of defect equilibria and transport parameters in Y2O3-stabilized ZrO2 using EPR and optical relaxation , 2000 .

[31]  P. Dyer,et al.  Ion transport membrane technology for oxygen separation and syngas production , 2000 .

[32]  G. Lu,et al.  Maximizing the localized relaxation: the origin of the outstanding oxygen storage capacity of kappa-Ce2Zr2O8. , 2009, Angewandte Chemie.

[33]  Alan Atkinson,et al.  Chemically-induced stresses in ceramic oxygen ion-conducting membranes , 2000 .

[34]  E. Wachsman,et al.  Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide , 2009 .

[35]  A. Virkar,et al.  Lattice Parameters and Densities of Rare‐Earth Oxide Doped Ceria Electrolytes , 1995 .

[36]  Keiji Yashiro,et al.  Fracture process of nonstoichiometric oxide based solid oxide fuel cell under oxidizing/reducing gradient conditions , 2010 .

[37]  P. Madden,et al.  A dipole polarizable potential for reduced and doped CeO2 obtained from first principles , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  A. Petrov,et al.  Defect structure and defect-induced expansion of undoped oxygen deficient perovskite LaCoO3-δ , 2008 .

[39]  Eric D. Wachsman,et al.  Higher conductivity Sm3+ and Nd3+ co-doped ceria-based electrolyte materials , 2008 .

[40]  Stuart B. Adler,et al.  Chemical expansivity of electrochemical ceramics , 2004 .

[41]  J. Qu,et al.  An electrochemomechanical theory of defects in ionic solids. I. Theory , 2007 .

[42]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[43]  E. Wachsman,et al.  Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide , 2009 .

[44]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[45]  S. Bishop,et al.  Point Defects in Oxides: Tailoring Materials Through Defect Engineering , 2011 .

[46]  M. Matsuka,et al.  Ce0.6 ( Mn0.3Fe0.1 ) O2 as an Oxidation-Tolerant Ceramic Anode for SOFCs Using LaGaO3-Based Oxide Electrolyte , 2010 .

[47]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[48]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[49]  J. Stevenson,et al.  Dimensional Instability of Doped Lanthanum Chromite , 1996 .

[50]  B. Sheldon,et al.  Space charge induced surface stresses: implications in ceria and other ionic solids. , 2011, Physical review letters.

[51]  E. Muccillo,et al.  Lattice parameters of yttria-doped ceria solid electrolytes , 2004 .

[52]  D. Strickler,et al.  Electrical Conductivity in the ZrO2-Rich Region of Several M2O3—ZrO2 Systems , 1965 .

[53]  P. Madden,et al.  Oxygen vacancy ordering within anion-deficient Ceria , 2009 .

[54]  P. Madden,et al.  Oxygen Vacancy Ordering and the Conductivity Maximum in Y2O3-Doped CeO2 , 2012 .

[55]  T. Kudo,et al.  Oxygen Ion Conduction of the Fluorite‐Type Ce1 − x Ln x O 2 − x / 2 ( Ln = Lanthanoid Element ) , 1975 .

[56]  Eric Blond,et al.  Thermomechanical modelling of ion-conducting membrane for oxygen separation , 2008 .

[57]  Masahiro Sugiura,et al.  Oxygen Storage Materials for Automotive Catalysts: Ceria-Zirconia Solid Solutions , 2003 .

[58]  E. Wachtel,et al.  Influence of Point‐Defect Reaction Kinetics on the Lattice Parameter of Ce0.8Gd0.2O1.9 , 2009 .

[59]  P. Madden,et al.  Cation composition effects on oxide conductivity in the Zr2Y2O7–Y3NbO7 system , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[60]  L. TullerHarry,et al.  Tailoring Material Properties through Defect Engineering , 2010 .