Neural network-based image reconstruction in swept-source optical coherence tomography using undersampled spectral data

[1]  Xilin Yang,et al.  Deep learning-based virtual refocusing of images using an engineered point-spread function , 2020, ACS Photonics.

[2]  Yair Rivenson,et al.  Recurrent neural network-based volumetric fluorescence microscopy , 2020, Light: Science & Applications.

[3]  George Barbastathis,et al.  On the use of deep learning for computational imaging , 2020, NanoScience + Engineering.

[4]  Kevin de Haan,et al.  Deep learning-based holographic polarization microscopy , 2020, ACS photonics.

[5]  A. Ozcan,et al.  Single-shot autofocusing of microscopy images using deep learning , 2020, ArXiv.

[6]  Aydogan Ozcan,et al.  Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy , 2020, Proceedings of the IEEE.

[7]  Yibo Zhang,et al.  Deep learning‐based color holographic microscopy , 2019, Journal of biophotonics.

[8]  Henry Pinkard,et al.  Deep learning for single-shot autofocus microscopy , 2019, Optica.

[9]  Mohammad Shorif Uddin,et al.  Image Quality Assessment through FSIM, SSIM, MSE and PSNR—A Comparative Study , 2019, Journal of Computer and Communications.

[10]  Lucien E. Weiss,et al.  Multicolor localization microscopy and point-spread-function engineering by deep learning. , 2019, Optics express.

[11]  Aydogan Ozcan,et al.  Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning , 2019, Nature Methods.

[12]  Aydogan Ozcan,et al.  Resolution enhancement in scanning electron microscopy using deep learning , 2019, Scientific Reports.

[13]  A. Ozcan,et al.  Deep learning enables cross-modality super-resolution in fluorescence microscopy , 2018, Nature Methods.

[14]  Giovanni Volpe,et al.  Digital video microscopy enhanced by deep learning , 2018, Optica.

[15]  Lei Tian,et al.  Deep learning approach to Fourier ptychographic microscopy , 2018, 1805.00334.

[16]  G. Nehmetallah,et al.  Deep learning approach for Fourier ptychography microscopy. , 2018, Optics express.

[17]  Christophe Zimmer,et al.  Deep learning massively accelerates super-resolution localization microscopy , 2018, Nature Biotechnology.

[18]  Yibo Zhang,et al.  Extended depth-of-field in holographic image reconstruction using deep learning based auto-focusing and phase-recovery , 2018, Optica.

[19]  Benjamin Recht,et al.  DeepLoco: Fast 3D Localization Microscopy Using Neural Networks , 2018, bioRxiv.

[20]  Tomer Michaeli,et al.  Deep-STORM: super-resolution single-molecule microscopy by deep learning , 2018, 1801.09631.

[21]  R. Leitgeb,et al.  Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. , 2017, Biomedical optics express.

[22]  Van Lam,et al.  Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection. , 2017, Optics express.

[23]  Aydogan Ozcan,et al.  Deep Learning Microscopy: Enhancing Resolution, Field-of-View and Depth-of-Field of Optical Microscopy Images Using Neural Networks , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[24]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[25]  Thomas Klein,et al.  High-speed OCT light sources and systems [Invited]. , 2017, Biomedical optics express.

[26]  Chen Wu,et al.  Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. , 2016, Biomedical optics express.

[27]  Kenneth K Y Wong,et al.  28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging. , 2015, Biomedical optics express.

[28]  Alexander W. Schill,et al.  Phase-sensitive optical coherence elastography at 1.5 million A-Lines per second. , 2015, Optics letters.

[29]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  R. Huber,et al.  High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s. , 2014, Biomedical optics express.

[32]  Wolfgang Drexler,et al.  Optical coherence tomography: Technology and applications , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[33]  Martin F. Kraus,et al.  Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology , 2013, Photonics West - Biomedical Optics.

[34]  R. Leitgeb,et al.  Ultrahigh-speed non-invasive widefield angiography. , 2012, Journal of biomedical optics.

[35]  Martin F. Kraus,et al.  Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT , 2011, Biomedical optics express.

[36]  B. Vakoc,et al.  >400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging. , 2010, Optics letters.

[37]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.

[38]  J. Fujimoto,et al.  Three-dimensional endomicroscopy using optical coherence tomography , 2007 .

[39]  John A. Evans,et al.  Comprehensive volumetric optical microscopy in vivo , 2006, Nature Medicine.

[40]  J. Fujimoto,et al.  Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. , 2006, Optics letters.

[41]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[42]  S. Yun,et al.  Ultrahigh-speed optical frequency domain imaging and application to laser ablation monitoring , 2006 .

[43]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[44]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[45]  J. Fujimoto,et al.  Optical coherence tomography using a frequency-tunable optical source. , 1997, Optics letters.

[46]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[47]  S. Dwivedi,et al.  Obesity May Be Bad: Compressed Convolutional Networks for Biomedical Image Segmentation , 2020 .

[48]  Thomas J. Naughton,et al.  Performance of autofocus capability of deep convolutional neural networks in digital holographic microscopy , 2016 .

[49]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.