A probabilistic atlas of finger dominance in the primary somatosensory cortex

With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.

[1]  Pierre-Louis Bazin,et al.  Multi-contrast multi-scale surface registration for improved alignment of cortical areas , 2015, NeuroImage.

[2]  Steen Moeller,et al.  T 1 weighted brain images at 7 Tesla unbiased for Proton Density, T 2 ⁎ contrast and RF coil receive B 1 sensitivity with simultaneous vessel visualization , 2009, NeuroImage.

[3]  Johan Wessberg,et al.  Mapping quantal touch using 7 Tesla functional magnetic resonance imaging and single-unit intraneural microstimulation , 2016, eLife.

[4]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[5]  John C. Gore,et al.  Differentiation of somatosensory cortices by high-resolution fMRI at 7T , 2011, NeuroImage.

[6]  Michael Petrides,et al.  Tight Coupling between Morphological Features of the Central Sulcus and Somatomotor Body Representations: A Combined Anatomical and Functional MRI Study. , 2019, Cerebral cortex.

[7]  S. Lehéricy,et al.  Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization , 2001, Annals of neurology.

[8]  Olaf Blanke,et al.  Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus , 2014, Human brain mapping.

[9]  Wietske van der Zwaag,et al.  Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: A 7T fMRI study , 2017, NeuroImage.

[10]  Bernhard Preim,et al.  A cytoarchitecture-driven myelin model reveals area-specific signatures in human primary and secondary areas using ultra-high resolution in-vivo brain MRI , 2015, NeuroImage.

[11]  Matthew J. Brookes,et al.  Imaging human cortical responses to intraneural microstimulation using magnetoencephalography , 2018, NeuroImage.

[12]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[13]  Simon Hanslmayr,et al.  Addressing challenges of high spatial resolution UHF fMRI for group analysis of higher‐order cognitive tasks: An inter‐sensory task directing attention between visual and somatosensory domains , 2019, Human brain mapping.

[14]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[15]  Bernhard Ross,et al.  Somatotopic finger mapping using MEG: Toward an optimal stimulation paradigm , 2013, Clinical Neurophysiology.

[16]  H. E. Torebjörk,et al.  Specific sensations evoked by activity in single identified sensory units in man. , 1980 .

[17]  B. Whitsel,et al.  Response of anterior parietal cortex to cutaneous flutter versus vibration. , 1999, Journal of neurophysiology.

[18]  T. Paus,et al.  Studying neuroanatomy using MRI , 2017, Nature Neuroscience.

[19]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[20]  A Villringer,et al.  fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex , 2000, Neuroreport.

[21]  Essa Yacoub,et al.  Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field , 2018, NeuroImage.

[22]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[23]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[24]  Liang Wang,et al.  Probabilistic Maps of Visual Topography in Human Cortex. , 2015, Cerebral cortex.

[25]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[26]  Denis Schluppeck,et al.  Event‐related fMRI at 7T reveals overlapping cortical representations for adjacent fingertips in S1 of individual subjects , 2013, Human brain mapping.

[27]  Robert Chen,et al.  Digit somatotopy within cortical areas of the postcentral gyrus in humans. , 2008, Cerebral cortex.

[28]  Dave R. M. Langers,et al.  Tonotopic mapping of human auditory cortex , 2014, Hearing Research.

[29]  S. Francis,et al.  Within-Digit Functional Parcellation of Brodmann Areas of the Human Primary Somatosensory Cortex Using Functional Magnetic Resonance Imaging at 7 Tesla , 2012, The Journal of Neuroscience.

[30]  Daniel S. Margulies,et al.  Body Topography Parcellates Human Sensory and Motor Cortex , 2017, Cerebral cortex.

[31]  Matthew J. Brookes,et al.  Optimising experimental design for MEG beamformer imaging , 2008, NeuroImage.

[32]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[33]  Selene da Rocha Amaral,et al.  BOLD response analysis by iterated local multigrid priors , 2007, NeuroImage.

[34]  A. Nummenmaa,et al.  Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography , 2016, bioRxiv.

[35]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[36]  Mark W. Woolrich,et al.  A tool for functional brain imaging with lifespan compliance , 2019, Nature Communications.

[37]  Nikolaus M. Szeverenyi,et al.  Fingertip Representation in the Human Somatosensory Cortex: An fMRI Study , 1998, NeuroImage.

[38]  G. Westling,et al.  Cortical Responses to Single Mechanoreceptive Afferent Microstimulation Revealed with fMRI , 2000, NeuroImage.

[39]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[40]  Denis Schluppeck,et al.  Exploring structure and function of sensory cortex with 7T MRI , 2018, NeuroImage.

[41]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Ruey-Song Huang,et al.  Dodecapus: An MR-compatible system for somatosensory stimulation , 2007, NeuroImage.

[43]  W.J.R. Dunseath,et al.  fMRI of the Responses to Vibratory Stimulation of Digit Tips , 2000, NeuroImage.

[44]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[45]  D. Cheyne MEG studies of sensorimotor rhythms: A review , 2013, Experimental Neurology.

[46]  Alain Pitiot,et al.  Imaging gray matter with concomitant null point imaging from the phase sensitive inversion recovery sequence , 2015, Magnetic resonance in medicine.

[47]  Meike A. Schweisfurth,et al.  Comparison of fMRI Digit Representations of the Dominant and Non-dominant Hand in the Human Primary Somatosensory Cortex , 2018, Front. Hum. Neurosci..

[48]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[49]  A. Nakamura,et al.  Somatosensory Homunculus as Drawn by MEG , 1998, NeuroImage.

[50]  S. Francis,et al.  Mapping human somatosensory cortex in individual subjects with 7 T functional MRI 1 Running title : Mapping human somatosensory cortex , 2010 .

[51]  S. Francis,et al.  Somatotopy in the Human Somatosensory System , 2018, Front. Hum. Neurosci..

[52]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[53]  Susan Francis,et al.  A Data-Driven Multi-scale Technique for fMRI Mapping of the Human Somatosensory Cortex , 2019, Brain Topography.

[54]  R. Hari,et al.  Human cortical oscillations: a neuromagnetic view through the skull , 1997, Trends in Neurosciences.

[55]  Mapping the human , 2018, Nature Methods.

[56]  Richard Bowtell,et al.  Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex , 2014, NeuroImage.

[57]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[58]  R. Goebel,et al.  Mirror-Symmetric Tonotopic Maps in Human Primary Auditory Cortex , 2003, Neuron.

[59]  M. Tommerdahl,et al.  Human vibrotactile frequency discriminative capacity after adaptation to 25 Hz or 200 Hz stimulation , 2005, Brain Research.

[60]  J. Greenwood,et al.  Modifications of the Rayleigh Test for Uniformity in Analysis of Two-Dimensional Orientation Data , 1958, The Journal of Geology.

[61]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[62]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[63]  Richard S. J. Frackowiak,et al.  Human Primary Auditory Cortex Follows the Shape of Heschl's Gyrus , 2011, The Journal of Neuroscience.

[64]  A. Vallbo,et al.  Sensations evoked from the glabrous skin of the human hand by electrical stimulation of unitary mechanosensitive afferents , 1981, Brain Research.

[65]  J. Kaas,et al.  Multiple representations of the body within the primary somatosensory cortex of primates. , 1979, Science.

[66]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[67]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[68]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[69]  Markus Barth,et al.  Bayesian population receptive field modeling in human somatosensory cortex , 2020, NeuroImage.

[70]  Denis Schluppeck,et al.  Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs. , 2013, Journal of neurophysiology.

[71]  William D. Penny,et al.  Bayesian population receptive field modelling , 2016, NeuroImage.

[72]  Rolf Gruetter,et al.  Stroking or Buzzing? A Comparison of Somatosensory Touch Stimuli Using 7 Tesla fMRI , 2015, PloS one.

[73]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[74]  Elia Formisano,et al.  Processing of Natural Sounds in Human Auditory Cortex: Tonotopy, Spectral Tuning, and Relation to Voice Sensitivity , 2012, The Journal of Neuroscience.

[75]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[76]  Anders Björkman,et al.  Optimizing the mapping of finger areas in primary somatosensory cortex using functional MRI. , 2008, Magnetic resonance imaging.

[77]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[78]  K. Hasan,et al.  Phase-sensitive T1 inversion recovery imaging: a time-efficient interleaved technique for improved tissue contrast in neuroimaging. , 2005, AJNR. American journal of neuroradiology.

[79]  Meike A. Schweisfurth,et al.  Individual left‐hand and right‐hand intra‐digit representations in human primary somatosensory cortex , 2015, The European journal of neuroscience.

[80]  Philip Servos,et al.  Distributed digit somatotopy in primary somatosensory cortex , 2004, NeuroImage.

[81]  J. Wessberg,et al.  An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography , 2017, Journal of Neuroscience Methods.

[82]  Meike A. Schweisfurth,et al.  Individual fMRI maps of all phalanges and digit bases of all fingers in human primary somatosensory cortex , 2014, Front. Hum. Neurosci..

[83]  Uwe Aickelin,et al.  Tailored RF pulse for magnetization inversion at ultrahigh field , 2010, Magnetic resonance in medicine.