Measurements in two bases are sufficient for certifying high-dimensional entanglement

High-dimensional encoding of quantum information provides a way of transcending the limitations of current approaches to quantum communication, which are mostly based on the entanglement between qubits—two-dimensional quantum systems. One of the central challenges in the pursuit of high-dimensional alternatives is ascertaining the presence of high-dimensional entanglement within a given high-dimensional quantum state. In particular, it would be desirable to carry out such entanglement certification without resorting to inefficient full state tomography. Here, we show how carefully constructed measurements in two bases (one of which is not orthonormal) can be used to faithfully and efficiently certify bipartite high-dimensional states and their entanglement for any physical platform. To showcase the practicality of this approach under realistic conditions, we put it to the test for photons entangled in their orbital angular momentum. In our experimental set-up, we are able to verify 9-dimensional entanglement for a pair of photons on a 11-dimensional subspace each, at present the highest amount certified without any assumptions on the state.Certification of high-dimensional entanglement is required for improved quantum communication protocols, and is now shown to be achievable in an efficient manner by measuring quantum states twice in two different bases.

[1]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[2]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[3]  Anton Zeilinger,et al.  Experimental access to higher-dimensional entangled quantum systems using integrated optics , 2015, 1502.06504.

[4]  M. Horodecki,et al.  Quantum entanglement , 2007, quant-ph/0702225.

[5]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[6]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[7]  Stefano Pironio,et al.  Maximally Non-Local and Monogamous Quantum Correlations , 2006, Physical review letters.

[8]  S. Danilin,et al.  Stimulated Raman adiabatic passage in a three-level superconducting circuit , 2015, Nature Communications.

[9]  James Schneeloch,et al.  Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correlations , 2017, 1709.03626.

[10]  Mario Krenn,et al.  Quantifying high dimensional entanglement with two mutually unbiased bases , 2015, 1512.05315.

[11]  S. Pádua,et al.  Detection of nonlocal superpositions , 2014 .

[12]  Thomas Hellman PHIL , 2018, Encantado.

[13]  R.T.Thew,et al.  A Bell-type test of energy-time entangled qutrits , 2004, quant-ph/0402048.

[14]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[15]  Umesh Vazirani,et al.  Fully device-independent quantum key distribution. , 2012, 1210.1810.

[16]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[17]  A. Zeilinger,et al.  Generation and confirmation of a (100 × 100)-dimensional entangled quantum system , 2013, Proceedings of the National Academy of Sciences.

[18]  S. Brierley,et al.  Entanglement detection via mutually unbiased bases , 2012, 1202.5058.

[19]  M J Padgett,et al.  Characterization of high-dimensional entangled systems via mutually unbiased measurements. , 2012, Physical review letters.

[20]  G. Vallone,et al.  Hyperentanglement of two photons in three degrees of freedom , 2008, 0810.4461.

[21]  A. Vaziri,et al.  Experimental two-photon, three-dimensional entanglement for quantum communication. , 2002, Physical review letters.

[22]  Marcus Huber,et al.  Entropy vector formalism and the structure of multidimensional entanglement in multipartite systems , 2013, 1307.3541.

[23]  N. Tinbergen XI , 2019, Eskimoland.

[24]  Jian-Wei Pan,et al.  10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. , 2017, Physical review letters.

[25]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[26]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[27]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[28]  Nathan K Langford,et al.  Generation of hyperentangled photon pairs. , 2005, Physical review letters.

[29]  Robert W. Boyd,et al.  Exploring energy-time entanglement Using geometric phase , 2008, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[30]  K. Hensel Journal für die reine und angewandte Mathematik , 1892 .

[31]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[32]  Marcus Huber,et al.  Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement , 2013, 1301.2455.

[33]  D. Klyshko,et al.  METHODOLOGICAL NOTES: A simple method of preparing pure states of an optical field, of implementing the Einstein-Podolsky-Rosen experiment, and of demonstrating the complementarity principle , 1988 .

[34]  Mario Krenn,et al.  Orbital angular momentum of photons and the entanglement of Laguerre–Gaussian modes , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[36]  B E Anderson,et al.  Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System. , 2015, Physical review letters.

[37]  Peter Gustav Lejeune Dirichlet Sur la convergence des s\'eries trigonom\'etriques qui servent \`a repr\'esenter une fonction arbitraire entre des limites donn\'ees , 2008, 0806.1294.

[38]  L. A. González,et al.  Pixelated phase computer holograms for the accurate encoding of scalar complex fields. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[39]  Roberto Morandotti,et al.  On-chip generation of high-dimensional entangled quantum states and their coherent control , 2017, Nature.

[40]  Robert Fickler,et al.  Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information , 2014, Nature Communications.

[41]  Valerio Scarani,et al.  All pure bipartite entangled states can be self-tested , 2016, Nature Communications.

[42]  M. Lavery,et al.  Efficient sorting of orbital angular momentum states of light. , 2010, Physical review letters.

[43]  M. Padgett,et al.  Testing for entanglement with periodic coarse graining , 2015, 1506.01095.

[44]  R. Ursin,et al.  Distribution of high-dimensional entanglement via an intra-city free-space link , 2016, Nature Communications.

[45]  W. Wootters,et al.  Optimal state-determination by mutually unbiased measurements , 1989 .

[46]  Jian-Wei Pan,et al.  Experimental demonstration of a hyper-entangled ten-qubit Schr\ , 2008, 0809.4277.

[47]  S. Walborn,et al.  Mutual Unbiasedness in Coarse-Grained Continuous Variables. , 2017, Physical review letters.

[48]  M. Curty,et al.  Secure quantum key distribution , 2014, Nature Photonics.

[49]  Nicolas Gisin,et al.  Bell-Type Test of Energy-Time Entangled Qutrits , 2004 .

[50]  Anders Karlsson,et al.  Security of quantum key distribution using d-level systems. , 2001, Physical review letters.

[51]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[52]  C. Mora,et al.  Class of positive-partial-transpose bound entangled states associated with almost any set of pure entangled states , 2006, quant-ph/0607061.

[53]  Stephen M. Barnett,et al.  Mutually unbiased measurements for high-dimensional time-bin–based photonic states , 2013, 1311.2773.

[54]  Ebrahim Karimi,et al.  Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement , 2014, 1401.3512.

[55]  Marcus Huber,et al.  Structure of multidimensional entanglement in multipartite systems. , 2012, Physical review letters.

[56]  Nicolas Gisin,et al.  Creating high dimensional entanglement using mode-locked lasers , 2002, Quantum Inf. Comput..

[57]  S. Walborn,et al.  Detecting entanglement of continuous variables with three mutually unbiased bases , 2016, 1604.07347.

[58]  J. Siewert,et al.  Quantifying entanglement resources , 2014, 1402.6710.

[59]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[60]  W. Marsden I and J , 2012 .

[61]  Robert W Boyd,et al.  Efficient separation of the orbital angular momentum eigenstates of light , 2013, Nature Communications.

[62]  Brian J. Smith,et al.  Bandwidth manipulation of quantum light by an electro-optic time lens , 2016, Nature Photonics.

[63]  J. O'Brien,et al.  Universal linear optics , 2015, Science.

[64]  C. Macchiavello,et al.  Multipartite correlations in mutually unbiased bases , 2017, 1701.07412.

[65]  Robert W Boyd,et al.  Single-shot measurement of the orbital-angular-momentum spectrum of light , 2016, 2018 Conference on Lasers and Electro-Optics (CLEO).

[66]  R. Bertlmann,et al.  Bloch vectors for qudits , 2008, 0806.1174.

[67]  Nicolas Gisin,et al.  Quantifying Photonic High-Dimensional Entanglement. , 2017, Physical review letters.

[68]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[69]  Jeffrey H. Shapiro,et al.  High-dimensional quantum key distribution using dispersive optics , 2012, Physical Review A.

[70]  A. Zeilinger,et al.  Multi-photon entanglement in high dimensions , 2015, Nature Photonics.